PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microchannel cooling: simulations and experiments

Języki publikacji
EN
Abstrakty
EN
Single and two phase microchannel cooling is studied by models and experiments. For single phase cooling three models are discussed: a molecular dynamics model, a Monte Carlo method and a continuum model (CFD), Also microchannel cooling experiments with water and air as coolant are discussed. The experiments and the simulations show good agreement. A pulsating heat pipe is considered as an example of two phase cooling. A one--dimensional model and experiments are compared. The trends are predicted well by the model. However, there is a large difference in absolute values between the model and the experiments. Therefore the model needs some modifications for the three-dimensional phenomena that occur in the experiments.
Rocznik
Tom
Strony
67--74
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
  • Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
  • Philips Electronics Nederland BV, Prof. Holstlaan 4, 5656 AA Eindhoven, the Netherlands
autor
  • Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
  • Philips Electronics Nederland BV, Prof. Holstlaan 4, 5656 AA Eindhoven, the Netherlands
  • Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
Bibliografia
  • 1. Schmidt R.R., Notohardjono B.D., High end server low temperature cooling, IBM Journal of Research and Development 2002, 46, 739-75 l.
  • 2. Bird G.A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford 1994.
  • 3. Frezzotti A., A particle scheme for the numerical solution of the Enskog equation, Phys. Fluids 1997, 9, 1329-1335.
  • 4. Frezzotti A., Monte Carlo simulation of the heat in a dense sphere gas, European Journal of Mechanics 1999, 18, 103-119.
  • 5. Frijns A.J.H., Nedea S.V., Markvoort A.J., van Steenhoven A.A. , Hilbers P.A.J., Molecular dynamics and Monte Carlo simulations for heat transfer in micro and nanochannels, ICCS 2004; M. Bubak, G. Dick van Albada, P.M.A. Sloot, J.J. Dongarra (editors), Cracow, Poland 2004.
  • 6. Nedea S.V., Frijns A.J.H., van Steenhoven A.A, Jansen A.P.J., Properties of a dense hard-sphere gas near the walls of a microchannel, Second International Conference on Microchannels and Minichannels, ed. S.G. Kandlikar, Rochester, New York' 2004, pp. 289-296.
  • 7. Nedea S.V., Frijns A.J.H., van Steenhoven A.A, Markvoort A.J., Hilbers P.A.J., Hybrid molecular dynamics - Monte Carlo simulations for the properties of a dense and dilute hard-sphere gas in a microchannel, 24th International Symposium on Rarefied Gas Dynamics, Bari, Italy 2004.
  • 8. Frijns A.J.H., Eummelen E.H.E.C., Nicole C.C.S., Nedea S.V., van Steenhoven A.A., Integrated microchannel cooling with water and air: experiments and model simulations, submitted to Microscale Thermophysical Engineering.
  • 9. Nicole C.C.S., Dekker R., Aubry A, Pijnenburg R., Integrated micro-channel cooling in industrial applications, Second International Conference on Microchannels and Minichannels, S.G. Kandlikar, Rochester, New York 2004.
  • 10. Akachi H., Looped capillary heat pipe, Japanese Patent, No. 697147, 1994.
  • 11. Shafii M.B., Faghri A, Zhang Y., Thermal modeling of unlooped and looped pulsating heat pipes, Journal of Heat Transfer 2001, 123, 1159-1172.
  • 12. Khanderkar S., Dollinger N., Groll M., Understanding operational regimes of closed loop pulsating heat pipes, Applied Thermal Engineering 2003, 23, 707-719.
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0076-0021