PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Description of dispersed two-phase turbulent flow in the Lagrangian approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Turbulent two-phase participate flows are considered. Emphasis is put on the modelling issue and, in particular, on the class of models based on the Langevin equation. New model for particle dispersion in the Lagrangian approach is introduced. Physical arguments behind this model are quite different from those previously proposed in the literature, for some averaged characteristics of the relative motion of solid-fluid particle pairs are considered rather than instantaneous relative velocities. The model takes both particle inertia and external force effects into account. Its performance is examined by comparison with existing experimental data on particle dispersion in grid turbulence and with the outcome of a numerical experiment (the Large-Eddy Simulation). The obtained results are found to be satisfactory.
Rocznik
Tom
Strony
7--32
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Institute of Fluid - Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-952 Gdańsk, fax +48 58-416144
autor
  • Laboratoire National d'Hydraulique Electricite de France 6 quai Watier, 78400 Chatou, France
Bibliografia
  • [1] ARNOLD L., Stochastac differential equations: theory and applications, Wiley, New York 1974.
  • [2] BATCHELOR G.K., The theory of homogeneous turbulence, Cambridge University Press 1953.
  • [3] BERLEMONT A., DESJONQUERES P., GOUESBET G.. Particle Lagrangian simulation in turbulent flows, Int. J. Multiphase Flow 1990, 16, 19-34.
  • [4] CLIFT R., GRACE J.R., WEBER M.E.. Bubbles, drops and particles. Academic Press, New York 1978.
  • [5] CROWE C.T., Review - numerical models for dilute gas-particle flows, ASME J. Fluids Engng 1982, 104, 297-303.
  • [6] CSANADY G.T., Turbulent diffusion of heavy particles in the atmosphere, J. Atmos. Sci. 1963, 20, 201-208.
  • [7] DEUTSCH E., Dispersion de Particules dans une Turbulence Homogène Isotrope Stationnaire Calculée par Simulation Numérique directe des Grandes Echelles, Ph.D. Thesis, Ecole Centrale de Lyon 1992.
  • [8] DURST F.. MILOJEVIC D., SCHÔNUNG R., Eulerian and Lagrangian predictions of parti¬culate two-phase flows: a numerical study, Appl. Math. Modelling 1984, 8, 101-115.
  • [9] GATIGNOL R., The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow, J. Mécanique Théorique et Appliquée 1983, 1, 143-160.
  • [10] GOSMAN A.D., IOANNIDES E., Aspects of computer simulation of liquid-fueled combustors, 19th Acrospacc Science Meeting, St. Louis, MO. AIAA Paper 81-0323.
  • [11] HAWORTH D.C., POPE S B., A generalized Langevin model for turbulent flows, Phys. Fluids 1986, 29,387-405.
  • [12] HAWORTH D.C., POPE S.B., A pdf modelling study of self-similar turbulent free shear flows, Phys. Fluids 1987, 30, 1026-1044.
  • [13] HINZE J.O., Turbulence. 2nd ed., McGraw-Hill, New York 1975.
  • [14] HUANG K. Statistical mechanics, Wiley, New York 1963.
  • [15] KRAICHNAN R.H., Diffusion by a random velocity field. Phys. Fluids 1970, 13, 22-31.
  • [16] Lu Q.Q., FONTAINE J.R., AUBERTIN G., A Lagrangian model for solid particles in turbulent flows, Int. J. Multiphase Flow 1993, 19, 347-367.
  • [17] MAXEY M.R., RILEY J.J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 1983, 26, 883-889.
  • [18] MINIER J.-P., POZORSKI J., Analysis of existing Lagrangian models and new propositions for particle dispersion in homogeneous stationary turbulence, Rep. No. HE-44/92.29, Electricité de France, Chatou 1992.
  • [19]MINIER J.-P.. POZORSKI J., Derivation of a PDF model for turbulent flows based on prin¬ciples from statistical physics, Phys. Fluids 1997, 9.
  • [20] MINIER J.-P., SIMONIN O., A numerical approach to cyclone separators, Rep. No. HE-44/92.02, Electricité de France, Chatou 1992.
  • [21] MONIN A.S., YAGLOM A.M., Statistical fluid mechanics, MIT Press, Cambridge, Mass 1971.
  • [22] ORMANCEY A., Simulation du Comportement de Particules dans des Ecoulements Turbulents, Ph.D. Thesis, Ecole Nationale Supérieure des Mines, Paris 1984.
  • [23] ORZECHOWSKI Z., Przeplywy dwufazowe, PWN, Warszawa 1990.
  • [24] PERKINS R.J., GOSH S., PHILLIPS J.C., The interaction between particles and coherent structures in a plane turbulent jet, In advances in turbulence 3, ed. A.V. Johansson, P.H. Alfredsson, Springer-Verlag, Berlin 1991.
  • [25] POPE S.B., Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows, Phys. Fluids 1991, A 3, 1947-1957.
  • [26] POPE S.B., Lagrangian modelling of turbulent flows, Annu. Rev. Fluid Mech. 1994, 26, 23-63.
  • [27] POPE S.B., CHEN Y.L., The velocity-dissipation probability density funetion model for turbulent flows, Phys. Fluids 1990, A 2, 1437-1449.
  • [28] POZORSKI J., Numerical simulation of dispersed phase motion in turbulent two-phase flow, Doctoral thesis, Instytut Maszyn Przeplywowych PAN, Gdansk 1995.
  • [29] POZORSKI J., MINIER J.-P., Lagrangian modelling of turbulent flows. Rep. No. HE-44/94/016/A, Electricité de France, Chatou 1994.
  • [30] POZORSKI J., MINIER J.-P., SIMONIN O., Analysis and new propositions for the crossing- trajectory effect in Lagrangian turbulent dispersion models, In Gas-Solid Flows, ASME FED 1993, 166, 63-71.
  • [31] REEKS M.W., On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids 1991, A3, 446-456.
  • ¡32] REEKS M.W., On the continuum equations for dispersed particles in nonuniform flows, Phys. Fluids 1992, A 4, 1290-1303.
  • [33] RUBINOW S.I., KELLER J.B., The transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech. 1961, 11, 447-459.
  • [34] SAFFMAN P.G., The lift on a small sphere in a slow shear flow. J. Fluid Mech. 1965, 22, 385-400.
  • [35] SATO Y., YAMAMOTO K., Lagrangian measurement of fluid-particle motion in an isotropic turbulent field, J. Fluid Mech. 1987, 175, 183-199.
  • [36] SCHUSS Z., Theory and applications of stochastic differential equations, Wiley, New York 1980.
  • [37] SIMONIN O., Eulerian numerical approach for prediction of gas-solid turbulent two-phase flows, von Karman Institute Lecture Series, 1996-02, Rhode-Saint-Genese, Belgium 1996.
  • [38] SNYDER W.H., LUMLEY J.L., Some measurements of particle velocity autocorrelation i functions in a turbulent flow, J. Fluid Mech. 1971, 48, 41-71.
  • [39] SOBCZYK K, Stochastic differential equations with applications to physics and engineering, Kluver Academic Publishers 1991.
  • [40] SQUIRES K.D., EATON J.K.. Preferential concentration of particles by turbulence, Phys. Fluids 1991. A3, 1169-1178.
  • [41] VASSEUR P., COX R.G., The lateral migration of spherical particles sedimenting in a stagnant bounded fluid, J. Fluid Mech. 1977, 80, 561-591.
  • [42] WELLS M.R., STOCK D.E., The effect of crossing trajectories on the dispersion of particles in a turbulent flow, J. Fluid Mech. 1983, 136, 31-62.
  • [43] ZHOU Q., LESCHZINER M.A., A Lagrangian particle dispersion model based on a time- correiated stochastic approach, In Gas-Solid Flows, ASME FED 1991, 121, 255-260.
  • [44] ZHUANG Y., WILSON J.D., LOZOWSKI E.P., A trajectory simulation model for heavy particle motion in turbulent flow, ASME J. Fluids Engng. 1989, 111, 492-494.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0076-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.