Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We establish new efficient conditions sufficient for the unique solvability of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators.
Czasopismo
Rocznik
Tom
Strony
87--108
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Mathematical Institute, Academy of Sciences of the Czech Republic Żiżkova 22, 616 62 Brno, Czech Republic, sremr@ipm.cz
Bibliografia
- [1] AZBELEV N.V., MAKSIMOV V.P., RAKHMATULLINA L.F., Introduction to the theory of functional differential equations, Nauka, Moscow 1991, in Russian.
- [2] DILNAYA N., RONTÓ A., Multistage iterations and solvability of linear Cauchy problems, Math. Notes (Miskolc), 4(2) (2003), 89-102.
- [3] HAKL R., BRAVYI E., LOMTATIDZE A., Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations, Czechoslovak Math. J., 52(3)(2002), 513-530.
- [4] HAKL R., LOMTATIDZE A., PUŻA B., New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations, Math. Bohem., 127(4)(2002), 509-524.
- [5] HAKL R., LOMTATIDZE A., PUŻA B., On a boundary value problem for first order scalar functional differential equations, Nonlinear Anal. 53(3-4)(2003), 391-405.
- [6] HAKL R., LOMTATIDZE A., PUŻA B., On nonnegative solutions of first order scalar functional differential equations, Mem. Differential Equations Math. Phys., 23(2001), 51-84.
- [7] HAKL R., LOMTATIDZE A., SREMR J., Some boundary value problems for first order scalar functional differential equations, Folia Facult. Ścień. Natur. Univ. Masar. Brunensis, Brno 2002.
- [8] HAKL R., MUKHIGULASHVILI S., On a boundary value problem for n-th order linear functional differential systems, Georgian Math. J.. 12(2)(2005), 229-236.
- [9] HAKL, R.ŚREMR J., On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators, Nonlinear Oscil, to appear.
- [10] HALE J., Theory of functional differential equations, Springer-Verlag, New York-Heidelberg-Berlin, 1977.
- [11] KIGURADZE L, PUŻA B., Boundary value problems for systems of linear functional differential equations, Folia Facult. Ścień. Natur. Univ. Masar. Brunensis, Brno 2003.
- [12] KIGURADZE L, PUŻA B., On boundary value problems for systems of linear functional differential equations, Czechoslovak Math. J., 47(1997), 341-373.
- [13] KOLMANOVSKII V., MvSHKis A., Introduction to the theory and applications of functional differential equations, Kluwer Acad. Publ, Dordrecht-Boston-London, 1999.
- [14] RONTÓ A., On the initial value problem for systems of linear differential equations with argument deviations, Math. Notes (Miskolc), 6(1)(2005), 105-127.
- [15] RONTO A.N., Exact solvability conditions of the Cauchy problem for systems of linear first-order functional differential equatuions determined by (sigma 1, sigma 2,... , sigma n; &tau)-positive operators, Ukrain. Mat. J., 55(11)(2003), 1853-1884.
- [16] SCHWABIK Ś.. TVRDY M., VEJVODA O., Differential and integral equations: boundary value problems and adjoints, Academia, Praha 1979.
- [17] ŚREMR J., Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators, Math. Bohem., to appear.
- [18] W. WALTER, Differential and integral inequalities. Springer-Verlag, Berlin, Heidelberg, New York, 1970.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0069-0085