Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The durability of concrete structures is commonly considered in all domains of building activity. One of the promising methods for the durability improvement of concrete surface is application of controlled permeability formwork (CPF). Nowadays, a number of advanced materials designed to be effective as linings in formwork is commonly available. The actual effectiveness of such formworks depends significantly on the concrete mixture, its placing and compacting, and many other factors. Despite the good results of individual tests, many aspects of the problem have not been clarified yet. The recent tests were mostly done on specimens and very few results concerning the effects on entire members have been published so far. Apart from different tests on basic properties of concrete surface - like hardness, abrasion, tensile strength, resistance to water penetration and absorption, chloride diffusion, carbonation, frost resistance - the tests presented here were focused on the effectiveness of reduced concrete cover.
Słowa kluczowe
Rocznik
Tom
Strony
17--33
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
- Department of Structural Mechanics, University of Pavia, Pavia, Italy Tel.: 0039-0382-528422; fax: 0039-0382-985453, cinquini@unipv.it
Bibliografia
- 1. Bends0e M. and Kikuchi N.: Gencrating optimal topologics in structural de-sign using a homogeneization mcthod. Comput, Methods Appl. Mech. Eng., 71 2 (1988) 197-224.
- 2. Bends0e M. and Sigmund O. : Materiał inlerpolation schcmes in topology optimization Arch. Appl. Mech., 9, 69 (1999) 635-654.
- 3. Bends0e M. and Sigmund O. : Topology optimization - Theory, mcthods and applications, Springer, EUA, New York, 2003.
- 4. Brezzi, F., Fortin, M.,. Mixed and Hybrid Finite Element Methods, Springer-Yerlag, New York, 1991.
- 5. Bruns T.E. and Tortorelli D.A: Topology optimization of nonlinear elastic structures and compliant mechanisms, Comput. Mcthods Appl. Mech. Eng., 190,3(2001)443-3459.
- 6. Bruns T.E., Sigmund O. and Tortorelli D.A. Numcrical methods for the topology optimizalion of structures that exhibil snap-through, International Journal for Numerical Methods in Enginecring, 55 1215-1237.
- 7. Cheng B.-C. and Kikuchi N.: Topology optimization with design dependent loads, Comput. Methods Appl. Mech. Eng., 37 (2001) 57-70.
- 8. Diaz A. and Kikuchi N.: Solution to shape and topology cigenvalue optimiza-tion problems using a homogerrization method, International Journal for Nu-merical Methods in Engineering, 35,3 (1992) 1487-1502.
- 9. Duysinx P. and Bends0c M.: Topology optimization of continuum structures with local stress constraints, International Journal for Numerical Methods in Engineering, 43 (1998) 1453-1478.
- 10. Fleury C., CONL1N: an efficient dual optimizer based on convex approximation concepts, Struct. Multidisc. Optim., l (1989) 81-89. H.Hammer, V.B.: Checkmatc? Nodal densities in topology optimization, Proc.
- 11. Max Pianek Workshop on Engineering Design Optimization, Dept. of Mathematics, DTU, Denmark
- 12. Jang G.-W., Jeong J.H., Kim Y.Y., Sheen D., Park C. and Kim M.-N.: Checkerboard—frec topology optimization using non-conforming finite ele-ments, International Journal for Numerical Methods in Engineering, 57 (2003) 1717-1735.
- 13. Johnson. C. and Mercicr B. : Some cąuilibrium finite clemcnts methods for two dimensional elasticity problems. Numer. Malh., 30 (1978) 103-116.
- 14. Klarbring A., Petersson J., Torstenfelt B. and Karlsson M. Topology optimization of flow networks. Comput. Methods Appl. Mech. Eng., 192 (2003) 3909-3932.
- 15. Eucnbcrger D.G.: Linear and Nonlinear Programming, Addison—Weslcy, Reading, 1984.
- 16. Olhoff N. and Eschenauer H.A.: Topology Optimization of Continuum Structures - A Review, Applied Mechanics Revicws, 54 (2001) 331-390.
- 17. Petersson J.: Some convcrgence results in perimeter-controllcd topology optimization, Comput. Methods Appl. Mech. Eng., 171 (1999) 123-140.
- 18. Schwarz S., Mautc K. and Ramm E. Topology and shape optimization for elastoplastic slructural response. Comput, Methods Appl. Mech. Eng., 190 (2001)2135-2155.
- 19. Sigmund O.: A new class of extremal composites. Journal of the Mechanics and Physics of Solids, 48, 2 397-428.
- 20. Sigmund O. and Petersson J.: Numerical instabilities in topology optimization: A suryey on proccdures dealing with checkerboards, mesh-dependencies and local minima, Struct. Multidisc. Optim., 16 l (1998) 68-75.
- 21. Svanberg K.: Method of moving asymptotcs - A ncw method for structural optimization, International Journal for Numerical Methods in Engineering, 24,3(1984)359-373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0064-0055