PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discovery of significant intervals in time-series data

Identyfikatory
Warianty tytułu
Konferencja
ADBIS Workshop on Data Mining and Knowledge Discovery (ADMKD'2005) / sympozjum [1st; September 15-16, 2005; Tallinn, Estonia]
Języki publikacji
EN
Abstrakty
EN
This paper deals with time-series sensor data to discover significant intervals for prediction. In our project on intelligent home environment, we need to predict agent's actions (tum on/off the appliances) using previously collected sensor data. We propose an approach that replaces the time-series point values with time-series intervals, which represent the characteristics of the data. Time-series data is folded over a periodicity (day, week, etc.) to form intervals and significant intervals are discovered from them that satisfy minimum support and maximum interval-length criteria. By compressing the time-series data and working with intervals, discovery of significant intervals (for prediction) is efficient. Also, sequential mining algorithms perform better if they are modified to work with reduced dataset of significant intervals. In this paper, we present a suite of algorithms for detecting significant intervals, discuss their characteristics, advantages and disadvantages and analyze their performance.
Rocznik
Strony
87--102
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
Bibliografia
  • [1] Roddick, J. F. and S. Myra, A Survey of Temporal Knowledge Discovery Paradigms and Methods. In IEEE Transactions on knowledge and data engineering, Vol 14. No. 14, July/August 2002.
  • [2] Bohlen, M. H., R. Busatto, and C. S. Jensen., Point-Versus Interval-based Temporal DataModels. In IEEE Data Engineering, 1998.
  • [3] Cook, D.J., et al., MavHome: An Agent-Based Smart Home. In Proceedings of the Conference on Pervasive Computing, 2003.
  • [4] Mannila, H., H. Toivonen, and I. Verkamo, Discovering Frequent Episodes in Sequences. In Proceedings of the 1st Intl. Conference on Knowledge Discovery and Data Mining. Montreal, Canada: p. 210-215, 1995.
  • [5] Srikant, R. and R. Agrawal, Mining Sequential Patterns: Generalizations and Performance Improvements. In 5th Intl. Conf. Extending Database Technology (EDBT), Avignon, France, 1995.
  • [6] Srinivasan, A. and S. Chakravarthy, Discovery of Interesting Episodes in Sequence Data. In PAKDD Workshops, May 2004, Sydney, Australia.
  • [7] Miller, R. J., Y. Yang, Association Rules over Interval Data, In Proc of the 1997 ACM SIGMOD international conference on Management of data, 452 - 461, 1997.
  • [8] Srikant, R. and R. Agrawal. Mining quantitative association rules in large relational tables. In Proc. of the 1996 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD '96), Montreal, Canada, June 1996.
  • [9] Leonard, M. and B.Wolf, Mining Transactional and Time Series Data. In Proceedings of the Thirtieth Annual SAS® Users Group International Conference, 1999.
  • [10] Das, S.K., et al., The Role of Prediction Algorithms in the MavHome Smart Home Architecture, In IEEE Wireless Communications Communications Special Issue on Smart Homes. 2002. p. 77-84.
  • [11] Bowerman, B.L. and R.T. O'Connel, Time Series Forecasting (Second Edition). 1990: PWS Publishers, p. 25-120.
  • [12] Villafane, R, K. A. Hua, D. Tran and B. Maulik., Mining Interval Time Series. In Int'l Conference on Data Warehousing and Knowledge Discovery, 1999.
  • [13] Srinivasan, A. Significant Interval and Episode Discovery in Time-Series Data. In MS Thesis. CSE department, http://www.cse.uta.edu/Research/Publications/Downloads/CSE-2003-39.pdf. The University of Texas at Arlington. 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0059-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.