PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of random sequential adsorption of interacting particles on partially covered surfaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The random sequential adsorption (RSA) approach was used to analyse adsorption kinetics of charged spheres at charged surfaces precovered with smaller sized, likely charged particles. The algorithm of M. R. Oberholzer et al. [20] was exploited to simulate adsorption allowing electrostatic interaction in three dimensions, that is, particle-particle and particle-surface interactions during the approach of a particle to the substrate. The calculation of interaction energies in the model was achieved with the aid of a many-body superposition approximation. The effective hard particle approximation was used for determination of corresponding simpler systems of particles, namely: the system of hard spheres, the system of particles with perfect sink model of particle-interface interaction, and the system of hard discs at equilibrium. Numerical simulations were performed to determine adsorption kinetics of larger particles for various surface concentration of smaller particles. It was found that in the limit of low surface coverage the numerical results were in a reasonable agreement with the formula stemming from the scaled particle theory with the modifications for the sphere-sphere geometry and electrostatic interaction. The results indicate that large particle-substrate attractive interaction significantly reduces the kinetic barrier to the large, charged particle adsorption at a surface precovered with small, likely charged particles.
Rocznik
Strony
221--239
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Institue of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland (Instytut Katalizy i Fizykochemii Powierzchni PAN)
Bibliografia
  • [1] E. L. Hinrichsen, J. Feder, T. Jøssang, J. Stat. Phys., 44 (1986) 793.
  • [2] P. Schaaf, J. Talbot, J. Chem. Phys., 91 (1989) 4401.
  • [3] J. Talbot, G. Tarjus, P. Schaaf, Phys. Rev. A, 40 (1989) 4808.
  • [4] P. Viot, G. Tarjus, Europhys. Lett. 13 (1990) 295.
  • [5] G. Tarjus, P. Viot, S. M. Ricci, J. Talbot, Molec. Phys., 73 (1991) 773.
  • [6] P. Viot, G. Tarjus, S. M. Ricci, J. Talbot, J. Chem. Phys., 97 (1992) 5212.
  • [7] S. M. Ricci, J . Talbot, G. Tarjus, P. Viot, J. Chem. Phys., 97 (1992) 5219.
  • [8] Z. Adamczyk, P. Weroński, J. Chem. Phys., 105 (1996) 5562.
  • [9] P. Schaaf, A. Johner, J. Talbot, Phys. Rev. Lett., 66 (1991) 1603.
  • [10] B. Senger, P. Schaaf, A. Johner, J.-C. Voegel, A. Schmitt, J. Talbot, Phys. Rev., A. 44 (1991) 6926.
  • [11] B. Senger, P. Schaaf, J.-C. Voegel, A. Johner, A. Schmitt, J. Talbot, J. Chem. Phys., 97 (1992) 3813.
  • [12] B. Senger, J. Talbot, P. Schaaf, A. Schmitt, J.-C. Voegel, Europhys. Lett., 21 (1993) 135.
  • [13] R. Jullien, P. Meakin, J. Phys., A, 25 (1992) L189.
  • [14] H. S. Choi, J. Talbot, G. Tarjus, P. Viot, J. Chem. Phys., 99 (1993) 9296.
  • [15] G. Tarjus, P. Viot, H. S. Choi, J. Talbot, Phys. Rev. E, 49 (1994) 3239.
  • [16] P. Schaaf, P. Wojtaszczyk, E. K. Mann, B. Senger, J.-C. Voegel, D. Bedeaux, J. Chem. Phys., 102 (1995) 5077.
  • [17] Z. Adamczyk, B. Siwek, M. Zembala, P. Warszyński, J. Colloid Interface Sci., 140 (1990) 123.
  • [18] Z. Adamczyk, P. Weroński, Langmuir, 11 (1995) 4400.
  • [19] Z. Adamczyk, P. Weroński, J. Colloid Interface Sci., 189 (1997) 348.
  • [20] M. R. Oberholzer, J. M. Stankovich, S. L. Carnie, D. Y. C. Chan, A. M. Lenhoff, J. Colloid Interface Sci., 194 (1997) 138.
  • [21] J. Talbot, P. Schaaf, Phys. Rev. A, 40 (1989) 422.
  • [22] P. Meakin, R. Jullien, Phys. Rev. A, 46 (1992) 2029.
  • [23] Z. Adamczyk, B. Siwek, M. Zembala, P. Weroński, J. Colloid Interface Sci., 185 (1997) 236.
  • [24] Z. Adamczyk, B. Siwek, P. Weroński, J. Colloid Interface Sci., 195 (1997) 261.
  • [25] Z. Adamczyk, P. Weroński, J. Chem. Phys., 108 (1998) 9851.
  • [26] Z. Adamczyk, P. Weroński, E. Musiał, J. Chem. Phys., 116 (2002) 4665.
  • [27] Z. Adamczyk, P. Weroński, E. Musiał, J. Colloid Interface Sci., 248 (2002) 67.
  • [28] Z. Adamczyk, Irreversible Adsorption of Particles, in: Adsorption: Theory, Modeling and Analysis, ed.: J. Toth, Marcel-Dekker, New York 2002, p. 251.
  • [29] G. M. Bell, S. Levine, L. N. McCartney, J. Colloid Interface Sci., 33 (1970) 335.
  • [30] H. Ohshima, T. W. Healy, L. R. White, J. Colloid Interface Sci., 90 (1982) 17.
  • [31] J. A. Barker, D. Henderson, J. Chem. Phys., 47 (1967) 4714.
  • [32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, Sec. Ed. Cambridge Univ. Press 1992, p. 351.
  • [33] M. Piech, J. Y. Walz, Langmuir, 16 (2000) 7895.
  • [34] K. L. Hiebert, Subroutine DNSQ of SLATEC Library, http://www.netlib.org/slatec/
  • [35] Z. Adamczyk, B. Siwek, P. Weroński, M. Zembala, Progr. Colloid Polym. Sci., 111 (1998) 41.
  • [36] H. Reiss, H. L. Frisch, J. L. Lebowitz, J. Chem. Phys., 31 (1959) 369.
  • [37] J. L. Lebowitz, E. Helfand, E. Praestgaard, J. Chem. Phys., 43 (1965) 774.
  • [38] J. Talbot, X. Jin, N. H. L. Wang, Langmuir, 10 (1994) 1663.
  • [39] P. Weroński, Ph. D. Thesis: Kinetics and Topology of Irreversible Adsorption of Anisotropic Particles at Homogeneous Interfaces, Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków 2000, in Polish.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0036-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.