PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved method for deriving final ranking from a fuzzy preference relation via multiobjective optimization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methods for deriving final ranking from a fuzzy preference relation do not perform well in presence of irrelevant alternatives or in case of complex graphs with numerous circuits. Recently some approaches based on the idea of reducing differences between a global model of preferences and a final ranking via multiobjective optimization with an evolutionary algorithm have been proposed. In this work a new method is presented based on similar ideas but improving them. The multiobjective optimization problem is separated into two steps and solved with a better model of preferences, also using an evolutionary algorithm simpler than the former. These improvements allow us to obtain better compromise solutions in a simpler way than the previous proposals.
Rocznik
Strony
143--157
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Autonomous University of Sinaloa
autor
  • Autonomous University of Sinaloa
Bibliografia
  • [1] Bouyssou D., A note on the "Min in Favor" choice procedure for fuzzy preference relations, in: P.M. Pardalos, Y. Siskos, C. Zopounidis (eds.), Advances in Multicriteria Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.
  • [2] Bouyssou D., Vincke, Ph., Ranking alternatives on the basis of preference relations: a progress report with special emphasis on outranking relations, Série Mathématiques de la Gestion, Université Libre de Bruxelles, 1995.
  • [3] Coello, C., Van Veldhuizen, D., Lamont, G., Evolutionary Algorithms for solving multiobjective problems, Kluwer Academic Publishers, New York, 2002.
  • [4] Fernandez E., Leyva J.C., A method based on multiobjective optimization for deriving a ranking from a fuzzy preference relation, European Journal of Operational Research (in press).
  • [5] Fodor J., Roubens M., Fuzzy Preference Modeling and Multicriteria Decision Support, Kluwer, Dordrecht, 1994.
  • [6] French, S., Decision Theory: an introduction to the mathematics of rationality, Halsted Press, NY-Brisbane-Chichester, 1986.
  • [7] Leyva J.C., Fernández E., A genetic algorithm for deriving final ranking from a fuzzy outranking relation, Foundations of Computing and Decision Sciences 24, 1, 1999, 33-47.
  • [8] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer Verlag, Berlin-Heidelberg-New York, 1996.
  • [9] Orlovski S.A., Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems 1, 1978, 155-167.
  • [10] Perny P., Roy B., The use of fuzzy outranking relations in preference modeling, Fuzzy Sets and Systems 49, 1992, 33-53.
  • [11] Poon P.W., Carter J.N., Genetic algorithm crossover operators for ordering applications, Computers & Operations Research 22-1, 1995, 135-147.
  • [12] Roy B., Multicriteria methodology for Decision Aiding, Kluwer Academic Publisher, Dordrecht-Boston-London, 1996.
  • [13] Roy B., and Vanderpooten D., The European School of MCDA: A Historical Review, in: Slowinski, R. (ed.) OR: Toward Intelligent Decision Support, 14th European Conference on Operational Research, 1995, 39-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0035-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.