PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektrochemiczny sensor amoniaku

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
An ammonia gas sensor
Języki publikacji
PL
Abstrakty
PL
Przedmiotem badań był elektrochemiczny sensor amoniaku, w którym użyto Ba(Ce1-xTizYx-z)O3 jako elektrolitu stałego. Przeprowadzone badania analizy termicznej oraz dyfrakcji rentgenowskiej pozwoliły na określenie optymalnej metody preparatyki oraz warunki spiekania elektrolitu. Mikrostrukturę elektrolitu wyznaczono stosując mikroskopię elektronową. Skonstruowany sensor amoniaku stanowi ogniwo stałe, w którym elektrodami są warstwy porowatej platyny. Pomiary charakterystyk sensorowych posłużyły do wyznaczenia podstawowych parametrów sensora oraz określenia mechanizmu jego działania.
EN
An ammonia gas sensor was constructed with the high temperature proton conducting barium cerate doped with titanium and yttrium, Ba(Ce0.95Ti0.05)0.90Y0.1O3, as a solid electrolyte. It was prepared by solid state reaction. Preparation conditions were determined by means of the differential thermal analysis (DTA), thermogravimetry (TG) as well as mass spectrometry (MS). Chemical and phase composition and microstructure were determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). According to the XRD analysis, the product was homogenous and crystallized in orthorhombic Pmcn structure. Scanning electron microscopy (SEM) revealed that it is composed from uniform grains of the 0.5 – 1.5 m dimension. The sensor manufacture consisted of several steps. Firstly, the powder of Ba(Ce0.95Ti0.05)0.90Y0.1O3 was pressed in pellet die (100 MPa) and calcined at 1200oC for 24 hrs. The obtained materials were crushed, milled, formed in pellet die and isostatically pressed at 250 MPa and sintered at 1500oC for 24 hrs in air atmosphere. Then, both sides of polished pellet were covered with Pt paste ( provided by Demetron), dried at 100oC for 1 h and fired at 850oC for 2 hrs, after cooling down the pellet was attached to Al2O3 tube using the ceramic binder (Cerambond 885/516) to allow the separation of both electrode compartments during the sensor operation. The device was dried and heated at 370oC. The electromotive force (EMF) of the constructed cell was measured as a function of temperature (400- 700oC), NH3 concentration in argon (0-1000 ppm) at sensing electrode and time. Air, or Ar+5% H2 gas atmospheres were used at reference electrode. The best sensor performance was observed in case of air. Studies of sensor mechanism revealed the mixed potential behavior.
Rocznik
Strony
1--4
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Akademia Górniczo-Hutnicza im. S. Staszica, Wydział Inżynierii Materiałowej i Ceramiki, reaks@agh.edu.pl
Bibliografia
  • [1] Manchester K. L., Man of destiny-the life and work of F. Haber. Edavour 26 (2002) 64-69.
  • [2] Warnec k P., Chemistry of the natural atmosphere. Academic Press Inc. 1998.
  • [3] Bard C., Environmental chemistry. W.H. Freeman and Company 1995.
  • [4] Pijolat C., Pupier C., Sauvan M., Tournier G., Lalauze R., Gas detection for automotive pollution control. Sensors and Actuators B 59 (1999) 195-202.
  • [5] Wallin M., Karlsson C. J., Skoglundh M., Palmqvi s t A., Selective catalytic reduction of NOx with NH3 over zeolite HZSM- 5 – influence of transientammonia supply. J. Catal. 218 (2003) 575-579.
  • [6] Fuer te A., Valenzuela R. X., E s cudero M. J., Daza L., Ammonia as efficient fuel for SOFC. J. Power Sources 192 (2009) 170-174.
  • [7] Campbel l N. A., Reece J. B., Biology. Pearson Education Inc. 2002.
  • [8] Ament W., Huizenga J. R., Kort E., van der Masrk T. W, Grev ink R. G., Ver kerke G. J., Respiratory ammonia output and blood ammonia concentration during incremental exercise. Int.J. Sports Med. 20 (1999) 71-77.
  • [9] Close L.G., Cat l in F. I., Cohn A. M., Acute and chronic effects of ammonia burnson the respiratory tract. Arch. Otolaryngol. 106 (1980) 151-158.
  • [10] Licznerski B. W., Wiśn iewski K., Tet e rycz H., Nitsch K., Czujnik amoniaku. Mat. VI Konferencji Naukowej COE 2000, Gliwice 2000 t.1, 445-448.
  • [11] Cao W., Duan Y., Optical fiber-based evanescent ammonia sensor. Sensors and Actuators B 110 (2005) 252–259.
  • [12] Lundstrom I., Spetz A., Winquist F., Ackelid U., Sundgren H., Catalytic metals and field-effect devices- a useful combination. Sensors and Actuators B1 (1990) 15-20.
  • [13] Pasierb P., Rekas M., Solid-state potentiometric gas sensors- current status and future trends. J.Solid State Electrochem. 13 (2009) 3-25.
  • [14] Sazahin S. G., Soborover E. I., Takarev S. V., Sensor methods of ammonia inspection. Rus. J. Nondestructive Testing 39 (2003) 791-806.
  • [15] Kr igmar S. I., Bezpalchikov V. M., Sensor for detecting ammonia in the working area. Zavodskaya Laboratoriya 63 (1997) 12-13.
  • [16] Liang X., Lu G., Zhong T., Liu F., Quan B., New vtype ammonia sensor combining NASICON with a couple of oxide electrodes.
  • [17] Pasierb P., Drozdz-Ciesla E., Rekas M., Properties of BaCe1-xTixO3 materials for hydrogen electrochemical separator. J. Power Sources 181 (2008) 17-23.
  • [18] Pasierb P., Drozdz-Ciesla E., Gajerski R., Labus S., Komornic ki S., Rekas M., Chemical stability of Ba(Ce1- xTix)1-yYyO3 proton-conducting solid electrolytes, J. Therm. Anal. Calorim. 96 (2009) 475-480
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOM-0032-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.