Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Metody estymacji parametrów modelu Jilesa-Athertona - przegląd
Języki publikacji
Abstrakty
The Jiles-Atherton model is widely applied in the description of hysteresis in ferromagnetic, ferroelectric, magnetostrictive and piezoelectric materials, however the estimation procedure for recovery of its parameters may be troublesome for potential users. In the paper the issues related to the estimation problems are pointed out. The possible estimation methods are briefly discussed, including the DIRECT algorithm based on Banach contraction mapping.
Model Jilesa-Athertona jest powszechnie stosowany do opisu histerezy w materiałach ferromagnetycznych, ferroelektrycznych, magnetostrykcyjnych czy piezoelektrycznych, jednakże procedura estymacji parametrów tego modelu może sprawiać problemy potencjalnym użytkownikom. W pracy przedstawiono zagadnienia związane ze wspomnianymi problemami. Przedstawiono skrótowo wybrane metody estymacji, np. algorytm DIRECT oparty na twierdzeniu Banacha o odwzorowaniu zwężającym.
Wydawca
Czasopismo
Rocznik
Tom
Strony
145--148
Opis fizyczny
Bibliogr. 49 poz., wykr.
Twórcy
autor
autor
- Politechnika Częstochowska, Instytut Elektroenergetyki, al. Armii Krajowej 17, 42-200 Częstochowa, krzych@el.pcz.czest.pl
Bibliografia
- [1] Jiles D.C., Atherton D.L., Ferromagnetic hysteresis, IEEE Trans. Magn., 19 (1983), n. 5, 2183-2185
- [2] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis (invited), J. Appl. Phys., 55(1984), n. 6, pp. 2115-2120
- [3] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater., 61 (1986) 48-60
- [4] Smith R.C., Massad J.E., A unified methodology for modeling hysteresis in ferroelectric, ferromagnetic and ferroelastic materials, Technical Report CRSC-TR-01-10, North Carolina State University, Raleigh 2001
- [5] Dapino M.J., Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers, PhD Thesis, Iowa State University, Ames, Iowa, 1999
- [6] Benabou A., Clénet S., Piriou F., Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis, J. Magn. Magn. Mater. 261 (2003), pp. 139-160.
- [7] Philips D.A., Dupré L.R., Melkebeek J.A.A., Comparison of Jiles and Preisach hysteresis models in magnetodynamics, IEEE Trans. Magn., 31 (1995), n.6, 3551-3553
- [8] Lederer D., Igarashi H., Kost A., Honma T., On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics. IEEE Trans. Magn., 35 (1999), n.3, 1211--1214.
- [9] Naus H.W.L., Ferromagnetic hysteresis and the effective field, IEEE Trans. Magn., 38 (2002), n. 3417-3419.
- [10] Weiss M.P., L’hypothese du champ moleculaire et la propriete ferromagnetique, Journal de Physique, VI (1907), 661-690.
- [11] Šrobar F., Topology of feedback in the theory of molecular field, Physica B, 372 (2006), 21-24.
- [12] Chwastek K., Higher order term of magnetization in the effective field improving the accuracy of the Jiles-Atherton model, unpublished
- [13] Basso V., Bertotti G., Infortuna A., Pasquale M., Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials, IEEE Trans. Magn., 31 (1995), n. 6, 4000-4005.
- [14] Pearson J, Squire P.T., Atkinson D., Which anhysteretic magnetization curve?, IEEE Trans. Magn., 33 (1997), n. 5, 3970-3972.
- [15] Lewis L.H., Gao J., Jiles D.C., Welch D.O., Modeling of permanent magnets: interpretation of parameters obtained from the Jiles-Atherton hysteresis model, J. Appl. Phys., 79 (1996), n.8, 6470-6472.
- [16] Jiles D.C., Frequency dependence of hysteresis curves in conducting magnetic materials, J. Appl. Phys., 76 (1994), n. 10, 5849-5855.
- [17] Szczygłowski J., Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials, J. Magn. Magn. Mater., 223 (2001), 97-102.
- [18] Izydorczyk J., Extraction of Jiles and Atherton parameters of ferrite from initial magnetization curves, J. Magn. Magn. Mater., 302 (2006), 517-528.
- [19] Boukhtache S., Azoui B., Féliachi M., A novel model for magnetic hysteresis of silicon-iron sheets, Eur. Phys. J. Appl. Phys., 34 (2006), 201-204.
- [20] Włodarski Z., Analytical description of magnetization curves, Physica B, 373 (2006), 323-327
- [21] Chwastek K., Some improvements to the Jiles-Atherton model, unpublished
- [22] Chwastek K., Frequency behaviour of the modified Jiles-Atherton model, Physica B, 403 (2008), 2484-2487
- [23] Jiles D.C., Thoelke J.B., Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops. IEEE Trans. Magn., 25 (1989), n.5, 3928-3930.
- [24] Jiles D.C., Thoelke J.B., Devine M.K., Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans. Magn., 28 (1992), n.1, 27-35.
- [25] Venkarataman R., Modeling and adaptive control of magnetostrictive actuators. PhD. Thesis, Center for Dynamics and Control of Smart Structures, University of Maryland, USA, 1999.
- [26] Venkarataman R., Krishnaprasad P.S., Qualitative analysis of a bulk ferromagnetic hysteresis model. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998, 2443-2448.
- [27] Iyer R.V., Krishnaprasad P.S., On a low dimensional model for ferromagnetism. Nonlinear Anal., 61 (2005), 1447-1482.
- [28] Bastos J.P.A., Sadowski N., Electromagnetic modeling by finite element method, Marcel Dekker Inc., New York 2003
- [29] Andrei P., Oniciuc l., Stancu A., Stoleriu L., Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method, J. Magn. Magn. Mater., 316 (2007) e330-e333
- [30] Del Moral Hernandez E., Muranaka C.S., Cardoso J.R., Identification of the Jiles-Atherton model parameters using random and deterministic searches. Physica B, 275 (2000), 212-215
- [31] Wilson P.R., Neil Ross J., Brown A.D., Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm. IEEE Trans. Magn., 37 (2001), n.2, 989-993
- [33] Wilson P.R. Neil Ross J., Brown A.D., Magnetic material model characterization and optimization software, IEEE Trans. Magn., 38 (2002), n.2, 1049-1052
- [34] Almeida L.A.L., Deep G.S., Lima A.M.N., Neff H., Modeling a magnetostrictive transducer using genetic algorithm, J. Magn. Magn. Mater., 266-230 (2001), 1262-1264
- [35] Shuying C., Boweng W., Rongge Y., Wenmei H., Qingxin Y., Optimization of hysteresis parameters for the Jiles-Atherton model using a genetic algorithm. IEEE Trans. Appl. Supercon., 14 (2004), n. 2, 1157-1160
- [36] Leite J.V., Avila S.L., Batistela N.J., Carpes W.P., Sadowski N., Kuo-Peng P., Bastos J.P.A., Real coded genetic algorithm for Jiles-Atherton model parameters identification. IEEE Trans. Magn., 40 (2004), n.2, 888-891
- [37] Chwastek K., Szczygłowski J., Identification of a hysteresis model parameters with genetic algorithms. Math. Comput. Simulat., 71 (2006), 206-211
- [38] Szewczyk R., Extension of the model of the magnetic characteristics of anisotropic metallic glasses, J. Phys. D.: Appl. Phys., 40 (2007), 4109-4113
- [39] Zidarič B., Zagirnyak M., Lenasi K, Miljavec D., Hysteresis loses in soft magnetic composite materials, COMPEL, 25 (2006), n.1, 157-168
- [40] Salvini A., Riganti Fulginei F., Genetic algorithms and neural networks generalizing the Jiles-Atherton model of static hysteresis for dynamic loops, IEEE Trans. Magn., 38 (2002), n. 2, 873-876
- [41] Salvini A., Riganti Fulginei F., Soft computing for the identification of the Jiles-Atherton model parameters, IEEE Trans Magn., 41 (2005), n. 3, 1100-1108
- [42] Grimaldi D., Michaeli L., Palumbo A., Automatic and accurate evaluation of the parameters of a magnetic hysteresis model, IEEE Trans. Instr. Meas., 49 (2000), n. 1, 154-160
- [43] Mordjaoui M., Chabane M., Boudjema B., Daira R., Qualitative ferromagnetic hysteresis modeling, J. Comp. Sci., 3 (2007), n. 6, 399-405
- [44] Marion R., Scorretti R., Siauve N., Raulet M.-A., Krähenbühl L., Identification of Jiles-Atherton model parameters using Particle Swarm Optimization, IEEE Trans. Magn., (2008),
- [45] Marion R., Siauve N., Raulet M.-A., Krähenbühl L., Chwastek K., Szczygłowski J., Wilczyński W., A comparison of identification techniques for the Jiles-Atherton model of hysteresis, presented at XX Symposium Electromagnetic Phenomena in Nonlinear Circuits EPNC’2008, 2-4.06.2008, Lille, France
- [46] Leite J.V., Sadowski N., Kuo-Peng P., Batistela N.J., Bastos J.P.A., The inverse Jiles-Atherton mode parameters identification. IEEE Trans. Magn. 39 (2003), n.3, 1397-1400
- [47] Chwastek K., Szczygłowski J., Najgebauer M., A Direct Search algorithm for estimation of Jiles-Atherton hysteresis model parameters, Mat. Sci. Eng. B, 131 (2006), 22-26
- [48] Chwastek K., Szczygłowski J., An alternative method to estimate the parameters of Jiles-Atherton model, J. Magn. Magn. Mater., 314 (2007), 47-51
- [49] Chwastek K., Zastosowanie teorii pola efektywnego w modelowaniu dynamicznej pętli histerezy magnetycznej, praca doktorska, Politechnika Częstochowska, 2007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOM-0014-0015