PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Neural Models of Demands for Electricity - Prediction and Risk Assessment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Neuronowe modele zapotrzebowania na energie˛ elektryczna˛ - prognozowanie i ocena ryzyka
Języki publikacji
EN
Abstrakty
EN
Two neural systems for forecasting the electricity demand by the group of retail consumers are presented along with two methods for risk assessment of demand prediction models. The first forecasting system is composed of series-connected local neural predictors in the form of multilayer perceptron (MLP) networks. The system is mainly formed on the basis of expert knowledge and statistical tests. The second forecasting system has two levels. The first contains a neural classifier and the second consists of a set of local neural predictors. The classifier is built on the basis of a self-organising neural network (SOM). MLP or radial basis function (RBF) networks are used as predictors. Finally, two methods for assessing the risk of forecasting models are proposed. These consider financial risk measures such as value at risk (VaR) and conditional value at risk (CVaR). Possible economic losses posed by the application of predictions from a forecasting model are calculated using these risk measures. The risk analysis facilitates the selection of the forecasting model that generates the smallest risk of losses when selling energy contracts. The proposed methods are tested using data from the Polish electricity market.
PL
W pracy zostały przedstawione dwa neuronowe systemy przeznaczone do prognozowania zapotrzebowania na energię elektryczną grupy konsumentów detalicznych. Ponadto zaprenzetowano dwie metody oceny ryzyka modeli prognozowania.
Rocznik
Strony
272--279
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
Bibliografia
  • [1] S. A. Billings and X. Hong. Dual-orthogonal radial basis function networks for nonlinear time series prediction. Neural Networks, 11:479–493, 1998.
  • [2] R. Bjorgan, Chen-Ching Liu, and J. Lawarree. Financial risk management in a competitive electricity market. IEEE Transactions on Power Systems, 14(4):1285–1291, 1999.
  • [3] H. Choungfu. Fuzzy risk vs. probability risk analysis. In Soft Computing for Risk Evauation and Management. Applications in technology, Environment and Finance. Physica-Verlag, Haidelberg, 2001.
  • [4] R. Dahlgren, Chen-Ching Liu, and J. Lawarree. Risk assessment in energy trading. IEEE Transactions on Power Systems, 18(2):503–511, 2003.
  • [5] P.K. Dash, A.C. Liew, S. Rahman, and S. Dash. Fuzzy and neuro-fuzzy computing models for electric load forecasting. Engineering Applications of Artificial Intelligence, 8(4):423–433, 1995.
  • [6] M. Denton, A. Palmer, R. Masiello, and P. Skantze. Managing market risk in energy. IEEE Transactions on Power Systems, 18(2):494–502, 2003.
  • [7] I. Drezga and S. Rahman. Input variable selection for annbased short-term load forecasting. IEEE Transaction on Power System, 13(4):1238–1244, 1998.
  • [8] I. Drezga and S. Rahman. Short-term load forecasting with local ann predictors. IEEE Transaction on Power System, 14(3):844–850, 1999.
  • [9] Scott E. Fahlman. An empirical stidy of learning in backpropagation networks. Computer Science Technical Report CMU-CS-88-162, 1998.
  • [10] Gregory C. Reinsel George E.P. Box, Gwilym M. Jenkins. Time series analysis : forecasting and control. Prentice-Hall, Englewood Cliffs, 1994.
  • [11] H.S. Hippert, C.E. Pedreira, and R. C. Souza. Neural network for short-term load forecasting: A review and evaluation. IEEE Transaction on Power System, 16(1):44–55, 2001.
  • [12] H.R. Kassaei, A. Keyhani, T. Woung, and M. Rahman. A hybrid fuzzy, neural network bus load modeling and prediction. IEEE Transaction on Power System, 14(2):718–724, 1999.
  • [13] R. Katayama, K. Kuwata, Y. Kajiytani, and M. Watanabe. Embedding dimension estimation of chaotic time series using selfgenerating radial basis function network. Fuzzy sets and systems, 71:311–327, 1995.
  • [14] Ath. Kehagias and Vas. Petridis. Predictive modular neural networks for time series classification. Neural Networks, 10(1):31–49, 1997.
  • [15] Kwang-Ho Kim, Hyoung-Sum Youn, and Young-Cheol Kang. Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inrerence method. IEEE Transaction on Power System, 15(2):559–565, 2000.
  • [16] H. Leung, T. Lo, and S. Wang. Prediction of noisy chaotic time series using an optimal radial basic function neural network. IEEE Transaction on Neural Networks, 12(5):1163–1172, 2001.
  • [17] P. A. Mastorocostas, J. B. Theocharis, and A. G. Bakirtzis. Optimal fuzzy inference for short-term load forecasting. IEEE Transaction on Power System, 14(1):29–36, 1999.
  • [18] H. Mori and A. Yuihara. Deterministic annealing clustering for ann-based short-term load forecasting. IEEE Transaction on Power System, 16(3):545–551, 2001.
  • [19] V. Petridis and A. Kehagias. Predictive modular fuzzy systems for time-series classification. IEEE Transaction on Fuzzy System, 5(3):381–397, 1997.
  • [20] P. Piotrowski. Neural network with genetic algorithms for monthly electric energy consumption and peak power middle - term forecasting. Journal of Applied Computer Science, 10(1):105–115, 2002.
  • [21] T. Senjyu, H. Takara, K. Katsumi, and T. Funabashi. One-hourahead load forecasting using neural network. IEEE Transaction on Power System, 17(1):113–118, 2002.
  • [22] D. Srinivasan, C.S. Chang, and A.C. Liew. Demand forecasting using fuzzy neural computation, witch special emphasis on weekend and public holiday forecasting. IEEE Transaction on Power System, 10(4):1897–1903, 1995.
  • [23] J. Vermaak and E.C. Botha. Recurrent neural network for short-term load forecasting. IEEE Transaction on Power System, 13(1):126–132, 1998.
  • [24] H. Yoo and R.L. Pimmel. Short term load forecasting using a self-supervised adaptive neural network. IEEE Transaction on Power System, 14(2):779–784, 1999.
  • [25] R. Zemouri, D. Racoceanu, and N. Zerhouni. Recurrent radial basis function network for time-series perdiction. Engineering Applications of Artificial Inteligence, 16:453–463, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0039-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.