PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie grafenu w technice pomiarowej

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Application of graphene in measurements
Języki publikacji
PL
Abstrakty
PL
W artykule omówiono podstawowy budowy grafenu oraz przegląd jego właściwości, metod wytwarzania i zastosowań - głównie w elektronice i miernictwie. Z materiałem tym są wiązane duże nadzieje ze względu na jego konkurencyjne właściwości elektroniczne, optyczne, optoelektroniczne, elektrochemiczne i mechaniczne, w stosunku do krzemu, powszechnie wykorzystywanego do budowy różnych mikroczujników i bioczujników i ich matryc oraz mikrosystemów pomiarowych. Zostały też omówione przykłady zastosowania grafenu w technice pomiarowej.
EN
In this paper, basic considerations concerning graphene structure and review of its properties, methods of manufacturing and applications – mainly in electronics and measurements are presented. Promising results are expected for this material because of its competitive electronic, optical, optoelectronic, electrochemical and mechanical properties in comparison to silicon that is commonly utilized for construction of different sensors, sensors array and measuring microsystems. Examples of graphene applications in measuring techniques are discussed.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 140 poz., rys.
Twórcy
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN Zastosowanie grafenu w technice pomiarowej, wtorbicz@ibib.waw.pl
Bibliografia
  • [1] MacDiarmid A.G., Synthetic metals: a novel role for organic polymers, Synthetic Metals, 125 (2002) 11-22.
  • [2] Torbicz W., Pijanowska D., Polimery elektroprzewodzące w elektronice i analityce biochemicznej, Elektronika, (2009) nr 6, 36-43.
  • [3] Karousis N., Tagmatarchis N., Current progress on the chemical modification of carbon nanotubes, Chemical Review, 110 (2010) 5366–5397.
  • [4] Lee M., Baik K.Y., Noah M. et al, Nanowire and nanotube transistors for lab-on-a-chip applications, Lab on a Chip, 9(2009) 2267–2280.
  • [5] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I. V., Firsov A. A., Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
  • [6] Geim A.K., Novoselov K. S., The rise of grapheme, Nature Materials, 6 (2007) 183-191.
  • [7] Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., The electronic properties of grapheme, Rev. of Modern Physics, 81 (2009) 109-152.
  • [8] Rao C.N.R., Sood A.K., Subrahmanyam K.S., Govindaraj A., Graphene: the new two-dimensional nanomaterial, Angewandte Chemie Int. Edition, 48 (2009) 7752-7777.
  • [9] Singh V., Joung D., Zhai L. et al, Graphene based materials: Past, present and future, Progress in Materials Science, 56, 2011, 1178–1271.
  • [10] McMurry J., Chemia organiczna, Tomy 1-5, PWN, 2007.
  • [11] Guinea F., Castro Neto A.H., Peres N.M.R., Electronic properties of stacks of graphene layers, Solid State Comm., 143 (2007) 116–122.
  • [12] Rozhkov A.V., Giavaras G. et al, Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport, Physics Reports, 503 (2011) 77–114.
  • [13] Prada E., San-Jose P. et al, Band topology and the quantum spin Hall effect in bilayer grapheme, Solid State Comm., 151 (2011) 1075–1083.
  • [14] Bolotin K.I. et al, Ultrahigh electron mobility in suspended grapheme, Solid State Comm., 146 (2008) 351–355.
  • [15] Ni Z.H., Ponomarenko L.A. et al, On resonant scatterers as a factor limiting carrier mobility in graphene, Nano Letters, 10 (2010) 3868–3872.
  • [16] Heersche H.B. et al Induced superconductivity in grapheme, Solid State Comm., 143 (2007) 72–76.
  • [17] Yee K.-J., Kim J.-H. et al, Ultrafast modulation of optical transitions in monolayer and multilayer graphene, Carbon, 49 (2011) 4781–4785.
  • [18] Pei Q.-X., Sha Z.-D., Zhang Y.-W., A theoretical analysis of the thermal conductivity of hydrogenated grapheme, Carbon, 49 (2011) 4752–4759.
  • [19] Sihn S., Varshney V. et al, Prediction of 3D elastic moduli and Poisson’s ratios of pillared graphene nanostructures, Carbon, 50 (2012) 603–611.
  • [20] Kuila T. et al, Recent advances in graphene-based biosensors, Biosens. Bioelectronics, 26 (2011) 4637– 4648.
  • [21] Pumera M., Electrochemistry of graphene: new horizons for sensing and energy storage, The Chemical Record, 9 (2009) 211–223.
  • [22] Brownson D.A.C. et al, An overview of graphene in energy production and storage applications, J. of Power Sources, 196 (2011) 4873–4885.
  • [23] Huang X., Yin Z., Wu S. et al, Graphene-based materials: synthesis, characterization, properties, and applications, small, 7 (2011) 1876–1902.
  • [24] Li X., Wang X. et al Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 319 (2008) 1229-1232.
  • [25] Xu G., Torres C.M. et al, Edge effect on resistance scaling rules in graphene nanostructures, Nano Letters, 11 (2011) 1082–1086.
  • [26] Shukla A. et al, Graphene made easy: high quality, large-area samples, Solid State Comm., 149 (2009) 718-721.
  • [27] Green A. A., Hersam M.C., Solution phase production of graphene with controlled thickness via density differentiation, Nano Letters, 9 (2009) 4031-4036.
  • [28] Su C.-Y. et al, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano, 5 (2011) 2332-2339.
  • [29] Gao X.F., Jang J., Nagase S., Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, J. of Physical Chemistry C, 114 (2010) 832-842.
  • [30] Bai H., Li C., Shi G., Functional composite materials based on chemically converted graphene, Adv. Materials, 23 (2011) 1089-1115.
  • [31] Akhavan O., Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in etanol, Carbon, 49 (2011) 11-18.
  • [32] Cuong T.V., Pham V.H., Tran Q.T. et al Optoelectronic properties of graphene thin films prepared by thermal reduction of graphene oxide, Materials Letters, 64 (2010) 765–767.
  • [33] Batzill M., The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects, Surface Science Reports, 67 (2012)83–115.
  • [34] Regmi M. , Chisholm M.F., Eres G., The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon, 50 (2012) 134-141.
  • [35] Zhan N., Olmedo M. et al Layer-by-layer synthesis of largearea graphene films by thermal cracker enhanced gas source molecular beam epitaxy, Carbon, 49 (2011) 2046-2052.
  • [36] Yu X.Z., Hwang C.G.,. Jozwiak C.M et al, New synthesis method for the growth of epitaxial grapheme, J. of Electron Spectroscopy and Related Phenomena, 184 (2011) 100-106.
  • [37] Drabinska A., Grodecki K. et al, Growth kinetics of epitaxial graphene on SiC substrates, Physical Review B, 81 (2010) Issue 24, n. 245410.
  • [38] Strupinski W., Grodecki K., Wysmolek A. et al, Graphene epitaxy by chemical vapor deposition on SiC, Nano Letters, 11 (2011) 1786-1791.
  • [39] Masubuchi S., Arai M., Machida T., Atomic force microscopy based tunable local anodic oxidation of grapheme, Nano Letters, 11 (2011) 4542-4546.
  • [40] Wang H., Wang Q., Cheng Y. et al, Doping Monolayer Graphene with Single Atom Substitutions, Nano Letters, 12 (2012) 141-144.
  • [41] Kim Y.-K., Na H.-K., Min D.-H., Influence of surface functionalization on the growth of gold nanostructures on graphene thin films, Langmuir, 26, 2010, 13065–13070.
  • [42] Bai J., Huang Y., Fabrication and electrical properties of graphene nanoribbons, Materials Science and Engineering R, 70, 2010, 341–353.
  • [43] Kosynkin D.V., Lu W. et al, Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor, ACS Nano, 5 (2011) 968-974.
  • [44] Malec C.E., Elkus B., Davidović D., Vacuum-annealed Cu contacts for graphene electronics, Solid State Communications, 151 (2011) 1791–1793.
  • [45] Lim W.S. et al., Atomic layer etching of graphene for full graphene device fabrication, Carbon, 50 (2012) 429-435.
  • [46] Tsukamoto T., Ogino T., Graphene etching controlled by atomic structures on the substrate surface, Carbon, 50 (2012) 674-679.
  • [47] Lu Y., Guo J., Band gap of strained graphene nanoribbons, Nano Research, 3 (2010) 189–199.
  • [48] Grassi R. et al, Scaling of the energy gap in patternhydrogenated graphene, Nano Letters, 11 (2011) 4574–4578.
  • [49] Xu G., Torres, Jr. C.M., Tang J. et al., Edge effect on resistance scaling rules in graphene Nanostructures, Nano Letters, 11 (2011), 1082–1086.
  • [50] Liao L., Duan X., Graphene–dielectric integration for graphene transistors, Materials Science and Engineering R, 70 (2010) 354–370.
  • [51] Lemme M.C. et al, Mobility in graphene double gate field effect transistors, Solid-State Electronics, 52 (2008) 514–518.
  • [52] Late D.J., Ghosh A. et al, Characteristics of field-effect transistors based on undoped and B- and N-doped few-layer graphenes, Solid State Comm., 150 (2010) 734-738.
  • [53] Shao Y., Wang J., Wu H. et al, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis 22 (2010) 1027 – 1036.
  • [54] Bergveld P., Sibbald A., Analytical and biomedical applications of ion-selective field-effect transistors, Elsevier, Amsterdam, 1988.
  • [55] Torbicz W., Teoria i własności tranzystorów polowych jako czujników biochemicznych, Ossolineum, Wrocław, 1988.
  • [56] Dankerl M.,. Hauf M.V et al, Graphene solution-gated fieldeffect transistor array for sensing applications, Adv. Funct. Mater., 20 (2010) 3117–3124.
  • [57] F. Chen, Q. Qing, J. Xia, N. Tao, Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications, Chem. Asian J., 5 (2010) 2144–2153.
  • [58] Ohno Y., Maehashi K. et al, Chemical and biological sensing applications based on grapheme field-effect transistors, Biosensors and Bioelectronics, 26 (2010)1727–1730.
  • [59] Ohno Y. et al, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption, Nano Letters, 9 (2009) 3318-3322.
  • [60]. Sudibya H.G, He Q. et al, Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films, ACS Nano, 5, 2011, 990–1994.
  • [61] Myers M., Cooper J. et al, Functionalized graphene as an aqueous phase chemiresistor sensing material, Sensors and Actuators B, 155 (2011) 154–158.
  • [62] Chen X.-m., Wu G.-h. et al, Graphene and graphene-based nanomaterials: the promising materials for bright future ofelectroanalytical chemistry, Analyst, 136 (2011) 4631–4640.
  • [63] Fang Y. et al, Self-assembly of cationic polyelectrolytefunctionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing, Langmuir, 26 (2010) 11277–11282.
  • [64] Woo S., Kim Y.-R. et al, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide, Electrochimica Acta, 59 (2012) 509–514.
  • [65] Wang C. et al, A novel hydrazine electrochemical sensor based on the high specific surface area graphene, Microchim Acta, 169 (2010) 1–6.
  • [66] Fan Y., Liua J.-H. et all, Graphene–polyaniline composite film modified electrode for voltammetric determination of 4- aminophenol, Sens. Actuators B, 157 (2011) 669– 674.
  • [67] Zhou H., Wang X. et al, Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine, Analyst, 137 (2012) 305–308.
  • [68] Brownson D.A.C., Lacombe A.C. et al, Graphene electroanalysis: Inhibitory effects in the tripping voltammetry of cadmium with surfactant free graphene, Analyst, 137, (2012) 420–423.
  • [69] Arsat R., Breedon M. et al Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chemical Physics Letters, 467 (2009) 344–347.
  • [70] Yoon H.J. et al, Carbon dioxide gas sensor using a graphene sheet, Sens. Actuators B, 157 (2011) 310– 313.
  • [71] Chu B.H.,. Lo C.F, Nicolosi J. et al, Hydrogen detection using platinum coated graphene grown on SiC, Sens. Actuators B, 157 (2011) 500– 503.
  • [72] Pearce R. et al, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection, Sens. Actuators B, 155 (2011) 451–455.
  • [73] Kuila T., Bose S., Khanra P. et al, Recent advances in graphene-based biosensors, Biosens. Bioelectronics, 26 (2011) 4637– 4648.
  • [74] Liu Y. et al, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev., 41 (2012) 2283–2307.
  • [75] He Q. et al, Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano, 5 (2011) 5038–5044.
  • [76] Y. Ohno, K. Maehashi, Y. Yamashiro et al, Label-free biosensors based on aptamer-modified graphene field-effect transistors, J. Am. Chem. Soc., 132 (2010) 18012–18013.
  • [77] Kwon O.S., Park S.J. et al, Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer, ACS Nano, 6 (2012) 1486–1493.
  • [78] Huang Y., Dong X. et al, Graphene-based biosensors for detection of bacteria and their metabolic activities, J. Mater. Chem., 21 (2011) 12358–12362.
  • [79] Dey R.S., Raj C.R., Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material, J. Phys. Chem. C, 114 (2010) 21427–21433.
  • [80] Shan C., Yang H., Han D. et al, Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosens. Bioelectronics, 25 (2010) 1504–1508.
  • [81] Hou S., Kasner M.L. et al, Highly sensitive and selective dopamine biosensor fabricated with silanized graphene, J. Phys. Chem. C, 114 (2010) 14915–14921.
  • [82] Mao Y., Baoa Y. et al, Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element, Biosens. Bioelectronics, 28 (2011) 291– 297.
  • [83] Sun C.-L. et al, The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/sizeselected Pt nanocomposites, Biosens. Bioelectronics, 26, 2011, 3450–3455.
  • [84] Wang K., Li H.-N. et al, TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor, Analyst, 136 (2011) 3349–3354.
  • [85] Song W., Li D.-W., Li Y.-T. et al, Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles, Biosens. Bioelectronics, 26, (2011) 3181–3186.
  • [86] Alwarappan S., Liu C., Enzyme-doped graphene nanosheets for enhanced glucose biosensing, J. Phys. Chem. C, 114 (2010) 12920–12924.
  • [87] Lu W., Luo Y. et al, Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection, Biosens. Bioelectronics, 26 (2011) 4791– 4797.
  • [88] Ping J. et al, Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application, Biosens. Bioelectronics, 28 (2011) 204– 209.
  • [89] Shan Ch., Yang H., Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application, Anal. Chem., 81 (2009) 2378–2382.
  • [90] Liu S. et al, Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing, Biosens. Bioelectronics, 26 (2011) 4491– 4496.
  • [91] Jiang Y., Zhang Q., Li F., Niu L., Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application, Sens. Actuators B, 161 (2012) 728– 733.
  • [92] Qu F., Lu H., Yang M.,. Deng C, Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement, Biosens. Bioelectronics, 26 (2011) 4810– 4814.
  • [93] Yang M., Javad A., Gong S., Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels, Sensors and Actuators B, 155 (2011) 357–360.
  • [94] Liu K., Zhang J.-J., Wang C., Zhu J.-J., Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor, Biosens. Bioelectronics, 26 (2011) 3627–3632.
  • [95] Haque A.-M.J., Park H. et al, An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection, Anal. Chemistry, 84 (2012) 1871−1878.
  • [96] Qu F et al, Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide, Biosens. Bioelectronics, 26 (2011) 3927–3931.
  • [97] Xu S., Liu Y., Wang T., Li J., Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection, Anal. Chemistry, 83 (2011) 3817–3823.
  • [98] Chen Q. et al, Homogeneous detection of concanavalin A using pyrene-conjugated maltose massembled graphene based on fluorescence resonance energy transfer, Biosens. Bioelectronics, 26 (2011) 4497– 4502.
  • [99] Hu Y., Wang K., Zhang Q., Decorated graphene sheets for label-free DNA impedance biosensing, Biomaterials, 33, (2012)1097-1106.
  • [100] Saha K.K., Drndic M., Nikolic B.K., DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore, Nano Letters, 12 (2012) 50−55.
  • [101] Ahmed T., Kilina S. et al., Electronic fingerprints of DNA bases on graphene, Nano Letters, 12 (2012) 927−931.
  • [102] Dubuisson E., Yang Z., Loh K.P., Optimizing label-free DNA electrical detection on graphene platform, Anal. Chemistry, 83, 2011, 2452–2460.
  • [103] Huang K.-J., Niu D.-J.,. Sun J.-Y, et al, Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA, Colloids and Surfaces B: Biointerfaces, 82 (2011) 543–549.
  • [104] Liu M. et al, A graphene-based platform for single nucleotide polymorphism (SNP) genotyping, Biosens. Bioelectronics, 26 (2011) 4213–4216.
  • [105] Tang Z., Wu H., Cort J.R. et al, Constraint of DNA on functionalized graphene improves its biostability and specificity, small, 6 (2010) 1205–1209.
  • [106] Feng L., Chen Y., Ren J., Qu X., A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells, Biomaterials, 32 (2011) 2930-2937.
  • [107] Wang Y., Li Z. et al, Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells, J. Am. Chem. Soc., 132 (2010) 9274–9276.
  • [108] Wan Y. et al Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors, Anal. Chemistry, 83 (2011) 648–653.
  • [109] Wan Y., Lin Z., Zhang D. et al, Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria, Biosens. Bioelectronics, 26 (2011) 1959–1964.
  • [110] Gan T., Chu C. et al, Fabrication and application of a novel plant hormone sensor for the determination of methyl jasmonate based on self-assembling of phosphotungstic acid– graphene oxide nanohybrid on graphite electrode, Sens. Actuators B, 151 (2010) 8–14.
  • [111] Shan C., Yang H. et al, Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosens. Bioelectronics. 25 (2010)1504–1508.
  • [112] Guo K. et al, Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes, Talanta, 85 (2011) 1174– 1179.
  • [113] Song J.C.W. et al, Hot carrier transport and photocurrent response in graphene, Nano Letters, 11 (2011) 4688–4692.
  • [114] Lemme M.C. et al, Gate-activated photoresponse in a graphene p-n junction, Nano Letters, 11 (2011) 4134–4137.
  • [115] Chang H., Wang G. et al, A transparent, flexible, lowtemperature, and solution-processible graphene composite electrode, Adv. Funct. Materials, 20 (2010) 2893–2902.
  • [116] Kalita G. et al, Femtosecond laser induced micropatterning of graphene film, Materials Letters 65 (2011) 1569–1572.
  • [117] Bao Q. et al, Monolayer graphene as a saturable absorber in a mode-locked laser, Nano Research, 4 (2011) 297–307.
  • [118] Vakil A., Engheta N., Transformation optics using graphene, Science, 332 (2011) 1291-1294.
  • [119] Liu M., Yin X. et al, A graphene-based broadband optical modulator, Nature, 474 (2011) 64-67.
  • [120] Kim M., Szafron N.S. et al, Light-driven reversible modulation of doping in graphene, Nano Letters, 12 (2012) 182−187.
  • [121] Freitag M. et al, Energy dissipation in graphene field-effect transistors, Nano Letters, 9 (2009) 1883-1888.
  • [122] Hopkins P.E. et al, Manipulating thermal conductance at metal−graphene contacts via chemical functionalization, Nano Letters, 12 (2012) 590−595
  • [123] Hang Y.Y. et al Mechanical properties of bilayer graphene sheets coupled by sp3 bonding, Carbon, 49 (2011) 4511-4517.
  • [124] Bunch J. S. et al, Electromechanical resonators from graphene sheets, Science, 315, 2007, 490-493.
  • [125] A.M. van der Zande et al, Large-scale Arrays of single-layer graphene resonators, Nano Letters, 10 (2010) 4869–4873.
  • [126] Song X. et al, Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout, Nano Letters, 12 (2012) 198−202.
  • [127] Conley H.,. Lavrik N.V et al, Graphene bimetallic-like cantilevers: probing graphene/substrate interactions, Nano Letters, 11 (2011) 4748–4752.
  • [128] Wang X., Zhou X. et al, A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon, 49 (2011) 133–139.
  • [129] Sun B., Wang B. et al, Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance, Carbon, 50 (2012) 727-733.
  • [130] Tong S.W., Wang Y. et al, Graphene intermediate layer in tandem organic photovoltaic cells, Adv. Funct. Materiale, 21 (2011) 4430–4435.
  • [131] Cruz R. et al, Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells, Solar Energy, 86 (2012) 716–724.
  • [132] Areshkin D.A., White C.T., Building blocks for integrated graphene circuits, Nano Letters, 7 (2007) 3253-3259.
  • [133] Du A., Smith S.C., Electronic functionality in graphene-based nanoarchitectures: discovery and design via first-principles modeling, J. Phys. Chem. Lett., 2 (2011) 73–80.
  • [134] Kim K. et al, A role for graphene in silicon-based semiconductor devices, Nature, 479 (2011) 338-344.
  • [135] Wang H. et al, Graphene frequency multipliers, IEEE Electron Device Letters,30 (2009) 547-549.
  • [136] Myung S., Park J. et al, Ambipolar memory devices based on reduced graphene oxide and nanoparticles, Adv. Materials, 22 (2010) 2045–2049.
  • [137] Li S-L., Miyazaki H., Enhanced logic performance with Semiconducting bilayer graphene channels, ACS Nano, 5 (2011) 500-506.
  • [138] Han S.-J. et al, High-frequency graphene voltage amplifier, Nano Letters, 11 (2011) 3690–3693.
  • [139] Lin Y.-M., Valdes-Garcia A., Wafer-scale graphene integrated circuit, Science, 332 (2011) 1294-1297.
  • [140] Li F., Xue M. et al, Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing, Anal. Chemistry, 83, (2011) 6426–6430.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0039-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.