PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lyapunov Stability Analysis of DC-DC Power Electronic Converters: A Brief Overview

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza stabilności Lapunowa przekształtników energoelektronicznych DC-DC: zwięzły przegląd tematyki
Języki publikacji
EN
Abstrakty
EN
The brief overview of problems on Lyapunov stability analysis of DC-DC power electronic converters (PECs) is presented in this article. Problems of the PECs global and local stability analysis based on both continuous-time and discrete-time PECs models are discussed here. Special attention is addressed to the PECs stability analysis using direct Lyapunov method.
PL
W artykule przedstawiono zwięzły przegląd tematyki analizy stabilności Lapunowa przekształtników energoelektronicznych DC-DC. Omówiono tutaj problematykę analizy stabilności globalnej i lokalnej PECs na podstawie modeli PECs czasu ciągłego i czasu dyskretnego. Szczególną uwagę zwrócono na analizę stabilności PECs za pomocą bezpośredniej metody Lapunowa.
Rocznik
Strony
162--166
Opis fizyczny
Bibliogr. 36 poz., schem.
Twórcy
autor
autor
Bibliografia
  • [1] Tse Ch.K., Complex Behavior of Switching Power Converters, CRC Press LLC, (2004)
  • [2] Fang C.-C., Sampled-data modeling and analysis of one-cycle control and charge control”, IEEE Trans. Power Electron., 16 (2001), n.3, 345-350
  • [3] Teschl G., Ordinary Differential Equations and Dynamical Systems, American Mathematical Society, (2011)
  • [4] Liao X., Wang L., Yu P., Stability of Dynamical systems, Monograph Series on Nonlinear Science and Complexity, Elsevier, (2007)
  • [5] Krein P.T., Bass R.M., Type of Instability Encountered in Simple Electronic Circuit: Unboundedness, Chattering, and Chaos, Fifth Annual Applied Electronics Conf. and Exposition 1990, APEC ’90, (1990), 191-194
  • [6] Mazumder S.K., Nayfeh A.H., Boroyevich D., Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC–DC Converter, IEEE Trans. Power Electron., 16 (2001), n.2, 201-216
  • [7] Giaouris D., Banerjee S., Zahawi B., Pickert V., Stability analysis of the continuous conduction mode buck converter via Filippov’s method, IEEE Trans. Circuits Syst., Reg. Papers, 55 (2008), n.4, 1084–1096
  • [8] Maksimovic D., Stankovic A.M., Thottuvelil V.J., Verghese G.C., Modeling and Simulation of Power Electronic Converters, Proc. of the IEEE, 89 (2001), n.6, 898-912
  • [9] Pejovic P., Maksimovic D., A new algorithm for simulation of power electronic systems using piecewise-linear device models, IEEE Trans. Power Electron., 10 (1995),n.3, 340-348
  • [10] Tahami F., Mobed M., Molayee M., On Piecewise Affined Large-Signal Modeling of PWM converters, IEEE Int. Conf. on Industrial Technology, 2006. ICIT 2006, (2006), 1419-1423
  • [11] Mazumder S.K., Acharya K., Multiple Lyapunov Function Based Reaching Condition for Orbital Existence of Switching Power Converters, IEEE Trans. Power Electron., 23 (2008), n.3, 1449-1471
  • [12] Hu T., A Nonlinear-System Approach to Analysis and Design of Power-Electronic Converters With Saturation and Bilinear Terms, IEEE Trans. Power Electron., 26 (2011), n.2, 399-410
  • [13] Rubensson M., Lennartson B., Global convergence analysis for piecewise linear systems applied to limit cycles in a DC/DC converter, Proc. of the 2002 American Control Conf., 2 (2002), 1272-1277
  • [14] Xiao W., Zhang B., Qiu D., Control Strategy Based on Discrete-Time Lyapunov Theory for DC-DC Converters, The 33rd Annual Conf. of the IEEE Industrial Electronics Society (IECON) 2007, (2007), 1501-1505
  • [15] Almér S., Jönsson U., Kao C.-Y., Mari J., Stability Analysis of a Class of PWM Systems, IEEE Trans. Autom. Control, 52 (2007), n.6, 1072-1078
  • [16] Branicky M.S., Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems, IEEE Trans. Autom. Control, 43 (1998), n.4, 475-482
  • [17] Johansson M., Rantzer A., Computation of piecewise quadratic Lyapunov functions for hybrid systems, IEEE Trans. Autom. Control, 43 (1998), n.4, 555-559
  • [18] Sanesky M., Eirea G., Koo T.J., Hybrid Modelling and Control of Power Electronics, Proc. of the 6th Int. Conf. on Hybrid Systems: Computation and Control, (2003), 450-465
  • [19] Ye H., Michel A.N., Hou L., Stability Theory for Hybrid Dynamical Systems, IEEE Trans. Autom. Control, 43 (1998), n.4, 461-474
  • [20] Boyd S., Vandenberghe L., Convex Optimization, Cambridge University Press, (2004)
  • [21] Gahinet P., Nemirovsky A., Laub A.J., Chilali M., LMI Control Toolbox for Use with MATLAB. User’s Guide, MathWorks, Inc., (1995)
  • [22] Gahinet P., Nemirovsky A., LMI Lab: A Package for Manipulating and Solving LMIs, INRIA, Le Chesnay, (1993)
  • [23] Sturm J.F., Using SeDuMi 1.02. A Matlab Toolbox For Optimization Over Symmetric Cones, Optimization Methods and Software, 11-12 (1999), 625-653
  • [24] Lofberg J., Yalmip - A Toolbox for Modeling and Optimization in Matlab, 2004 IEEE Int. Symp. on Computer Aided Control Systems Design, (2004)
  • [25] Churilov A.N., An LMI Approach to Stability Analysis of PWM DC-DC Buck Converters, Proc. 2005 Int. Conf. Physics and Control, (2005), 592-595
  • [26] Onwuchekwa C.N., Kwasinski A., Analysis of Boundary Control for Buck Converters With Instantaneous Constant- Power Loads, IEEE Trans. Power Electron. 25 (2010), n.8, 2018-2032
  • [27] Mehran K., Giaouris D., Zahawi B., Stability Analysis and Control of Nonlinear Phenomena in Boost Converters Using Model-Based Takagi–Sugeno Fuzzy Approach,” IEEE Trans. Circuits. Syst. I, Reg. Papers., 57 (2010), n.1, 200-112
  • [28] Tse C.K., Lai Y.M., Iu H.H.C., Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator, IEEE Trans.Circuits Syst. I, Fundam Theory Appl., 47 (2000), n.4, 448-457
  • [29] El Aroudi A., Alarcon E., Rodriguez E., Leyva R., Stability of DC-DC converters: A ripple based index approach, 12th Int. Middle-East Power System Conf., 2008, (2008), 605-609
  • [30] Dranga O., Buti B., Nagy I., Stability Analysis of a Feedback-Controlled Resonant DC–DC Converter, IEEE Trans. Ind. Electron., 50 (2003), n.1, 141-152
  • [31] Dranga O., Buti B., Nagy I., Funato H., Stability Analysis of Nonlinear Power Electronic System Utilizing Periodicity and Introducing Auxiliary State Vector, IEEE Trans. Circuits Syst. I, Reg. Papers, 52 (2005), n.1, 168-178
  • [32] Hiskens I.A., Stability of Limit Cycles in Hybrid Systems, Proc. of the 34th Hawaii Int. Conf. on System Sciences 2001, HICSS '01, (2001)
  • [33] Song C.-C., Chen Y.-K., Liaw D.-C., Periodic Modeling and Analysis of Bifurcation Dynamics for Switching Converters, Int. Conf. on Power Electronics and Drive Systems 2009. PEDS, 2009, (2009), 1149-1154
  • [34] Di Bernardo M., Vasca F., Discrete-Time Maps for the Analysis of Bifurcations and Chaos in DC/DC Converters, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 47 (2000), n.2, 130-143
  • [35] Tse C.K., Di Bernardo M., Complex Behavior in Switching Power Converters, Proc. of the IEEE, 90 (2002), n.5, 768-781
  • [36] Natarajan K., A Comparative Study of Multi-Frequency and Sampled-data Models for PWM DC-DC Converters,” Canadian Conf. on Electrical and Computer Engineering 2006. CCECE '06, (2006), 2207-2210
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0038-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.