Identyfikatory
Warianty tytułu
Kompensacyjny system sterowania elektrowniami wiatorowyumio o zmiennej szybkości wiatru – wykorzystujący sztuczne sieci neuronowe
Języki publikacji
Abstrakty
Wind power systems have strong nonlinear characteristic, when wind speed is below the rated value. A novel intelligent hybrid maximum power point tracking (MPPT) controller for variable-speed wind power systems is designed, linear parameter-varying (LPV) gain-scheduling controller is designed to regulate output of fast-dynamics generator torque, neural network compensator is used to eliminate the interference caused by unknown parameters, WPSO algorithm is used to train neural network. Hardware-in-loop simulation model is built up based on Matlab/Xilinx, results prove that the method can effectively improve wind energy utilization efficiency, mechanical vibration of wind turbine is reduced, the maximum wind energy is captured, a better idea is provide for application of FPGA in wind power field.
Zaproponowano nowy system sterowania systeme elektrowni wiatrowych uwzględniający zmienność szybkości wiatru. System wykorzystuje sztuczne sieci neuronowe co szybkiego sterowania dynamiką momentu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
31--34
Opis fizyczny
Bibliogr. 10 poz., schem.
Bibliografia
- [1] Camblong H,Martinez de Alegria I,Rodrigrez M et al. Experimental Evaluation of Wind Turbines Maximum Power Point Tracking Controllers[J].Energy Conversion and Management, 47(2006), No. 18:2846-2858.
- [2] Bianchi F, De Battista H, Mantz RJ. Wind Turbine Control Systems – Principles, Modelling and Gain Scheduling Design[M].2006.
- [3] Hee-Sang Ko, Kwang Y. Lee, Min-Jae Kang,et al.Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller[J]. Neural Networks, (21)2008, No. 10:1439-1446.
- [4] M.A. Yurdusev,R. Ata,N.S.Cetin .Assessment of optimum tip speed ratio in wind turbines using artifical neural networks[J], (31)2006, No. 12: 2153–2161.
- [5] Giuseppe Grassi,Pietro Vecchio..Wind energy prediction using a two-hidden layer neural network,Commun Nonlinear Sci Numer Simulat[J], (15)2010, No. 3:2262–2266.
- [6] M.Bayat, M. Sedighizadeh and A. Rezazadeh.Wind Energy Conversion Systems Control Using Inverse Neural Model Algorithm[J].International Journal of Engineering and Applied Sciences, (2)2010, No. 3:40-46.
- [7] Inlian Munteanu, Antoneta Iuliana Brarcu,Nicolaos-Antonic Cutululis et,al. Optimal control of Wind Energy Systems[M]. London: Springer, 2008.
- [8] Pirabakaran,V.M. Becerra.PID Autotuning Using Neural Networks and Model Reference Adaptive Control[C].15th Triennial World Congress,Barcelona,2002.
- [9] WU F,GRIGORIADIS K M.LPV systems with parametervraying time delays: analysis and control [J]. Automatica, (37)2001, No. 2: 221-229.
- [10] S.Y X, T Li, Z.C Ji.Research on the Reconfigurable Implementation of Neural Network Controller Based on FPGA for DC-DC Converters[J]. Lecture Notes in Computer Science, (5552) 2009: 1152-1159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0037-0007