PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conservative Power Theory, Sequence Components and Accountability in Smart Grids

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zachowawcza teoria mocy, składowe symetryczne i rozliczenia energetyczne w sieciach inteligentnych
Języki publikacji
EN
Abstrakty
EN
Smart grids offer a new challenging domain for power theories and compensation techniques, because they include a variety of intermittent power sources which can have dynamic impact on power flow, voltage regulation, and distribution losses. When operating in the islanded mode, smart micro-grids can also exhibit considerable variation of amplitude and frequency of the voltage supplied to the loads, thus affecting power quality and network stability. Due to the limited power capability of smart micro-grids, voltage distortion can also get worse, affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required, since they form the basis for supply and load characterization and accountability. A revision of control techniques for harmonic and reactive compensators is also required, because they operate in a strongly interconnected environment and must perform cooperatively to face system dynamics, ensure power quality and limit distribution losses. This paper shows that the Conservative Power Theory (CPT) provides a suitable background to cope with smart grids characterization needs, and a platform for the development of cooperative control techniques for distributed switching power processors and static reactive compensators.
PL
Sieci inteligentne (Smart Grids) są nowym wyzwaniem dla teorii mocy i kompensacji, gdyż sieci takie mają różnorodne źródła energii, mogące mieć dynamiczny wpływ na przepływ energii i jej straty oraz na zmienność napięcia. W sytuacji pracy izolowanej ineligentne mikro-sieci mogą zasilać odbiorniki napięciem o znaczącej zmienności amplitudy i częstotliwości, odziaływując na jakość energii oraz stabilność. Ograniczona moc mikro-sieci może pogłębiać odkształcenie napięcia, odziaływująć na dokładność pomiarów i wadliwe działanie zabezpieczeń. W takiej sytuacji niezbędna jest rewizja teorii mocy, gdyż teoria ta tworzy podstawy opisu odbiorników i rozliczeń energetycznych. Niezbędna jest także rewizja metod sterowania kompensatorów harmonicznych i mocy biernej, gdyż kompensatory takie działając w silnie odziaływującym na siebie środowisku, muszą współpracować zgodnie z dynamiką systemu tak, aby zapewnić jakość energii oraz ograniczać jej straty. Niniejszy artykuł pokazuje, że Konserwatywna Teoria Mocy (CPT) tworzy podstawy teoretyczne dla rozwiązywania różnych zagadnień w sieciach inteligentnych oraz platformę dla rozwoju metod sterowania rozłożonych przekształtników i kompensatorów mocy biernej.
Rocznik
Strony
30--37
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Budeanu C.I., Puissances reactives et fictives, Institute Romain de l.Energie, (1927) Bucharest.
  • [2] Fryze S., Wirk-, Blind-, Scheinleistung in Elektrische Stromkreisen mit nichtsinusformingen Verlauf von Strom und Spannung, ETZ, Bd. 53, (1932), 596-599, 625-627, 700-702.
  • [3] Kuster N.L., Moore W.J.M., On the Definition of Reactive Power under Non-Sinusoidal Condition. IEEE Trans. on Power Apparatus and Systems, PAS-99 (1980), No. 3, 1845-1854.
  • [4] Shepherd W., Zakikhani P., Suggested definition of reactive power for nonsinusoidal systems. Proc. Inst. Elec. Eng., 119, (1972), No.9, 1361-1362, Sept.
  • [5] Depenbrock M., Active and nonactive power components of periodic currents in single- and multi-conductor systems with periodic voltages of arbitrary waveform. ETG Special Report 6, Nonactive Power (Blindleistung), (1980), 17–59, VDEVerlag. PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 86 NR 6/2010 37
  • [6] Czarnecki L.S., Orthogonal Decomposition of the Currents in a 3-Phase Nonlinear Asymmetrical Circuit with a Nonsinusoidal Voltage Source. IEEE Trans. on Instrumentation and Measurements, IM-37, (1988), No.1, 30-34.
  • [7] Page C.H., Reactive Power in Non-Sinusoidal Situations. IEEE Trans. of Instrumentation and Measurement, IM-29, (1990), No.4, 420-423.
  • [8] Czarnecki L.S.: Scattered and reactive current, voltage, and Power in Circuits with nonsinusoidal waveforms and their compensation. IEEE Trans. on Instrumentation and Measurements, IM-40 (1991), No.3, 563-567.
  • [9] Tenti P., Mattavelli P., “A Time-Domain Approach to Power Term Definitions under Non-Sinusoidal Conditions”, L’Energia Elettrica, 81, (2004) 75-84.
  • [10] Czarnecki L.S., Currents’ Physical Components (CPC) in circuits with nonsinusoidal voltages and currents. Part 1: Single-phase linear circuits, Electrical Power Quality and Utilization Journal, Vol. XI, (2005), No. 2, 3-14.
  • [11] Czarnecki L.S., Minimization of Reactive Power under Nonsinusoidal Conditions, IEEE Trans. on Instrumentation and Measurements, IM-36 (1987), No.1, 18-22.
  • [12] Willems J.L.: Power factor correction for distorted bus voltages, Electr. Mach. a. Power Syst, 13 (1987), 207-218.
  • [13] Czarnecki L.S., Reactive and unbalanced currents compensation in three-phase asymmetrical circuits under non-sinusoidal conditions, IEEE Trans. on Instrumentation and Measurements, IM-38, (1989), No.3, 754-759.
  • [14] Czarnecki L.S., Power factor improvement of three-phase unbalanced loads with nonsinusoidal supply voltages, European Trans. on Electrical Power Engineering (ETEP), 3, (1993), No.1, 67-72.
  • [15] Merhej S.J., Nichols W.H., Harmonic Filtering for the Offshore Industry, IEEE Trans. on Industry Applications, 30, (1994), No.3, 533-542.
  • [16] Depenbrock M., Single-phase rectifier with sinusoidal line current and well-smoothed DC quantities, Elektrotechnische Zeitschrift (ETZ-A), 94, (1973), H. 8., 466–471.
  • [17] Akagi H., Kanazawa Y., Nabae A., Generalized theory of the instantaneous reactive power in three-phase circuits, Proc. of the Int. Power Electron. Conf., (JIEE IPEC) (1983), 1375-1386.
  • [18] Akagi H., Kanazawa Y., Nabae A., Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Trans. Ind. Appl., 20, (1984), No. 3, 625-630.
  • [19] Akagi H., Nabae A., Control Strategy of Active Power Filters Using Multiple Voltage Source PWM Converters, IEEE Trans. on Ind. App., IA-22, (1986), No. 3, 460-465.
  • [20] Akagi H., Nabae A., The p-q Theory in Three-Phase Systems under Non-Sinusoidal Conditions, European Trans. on Electrical Power Engineering (ETEP), 3, (1993), No. 1, 27-31.
  • [21] Depenbrock M., The FBD-method, A Generally Applicable Tool For Analyzing Power Relations, IEEE Transactions on Power Systems, 8, (1993), No. 2, 381–387.
  • [22] Depenbrock M., Marshall D.A., Van Wyk J.D., Formulating Requirements for a Universally Applicable Power Theory as Control Algorithm in Power Compensators, European Trans. on Electrical Power Engineering (ETEP), 4, (1994), No. 6, 445-455.
  • [23] Rossetto L., Tenti P., Evaluation of instantaneous power terms in multi-phase systems: techniques and application to powerconditioning equipment, European Trans. on Electrical Power, (ETEP), 4, (1994), No. 6, 469-475.
  • [24] Willems J.L., Mathematical foundations of the instantaneous power concept: a geometrical approach, European Trans. on Electrical Power, (ETEP), 6, (1996), No. 5, 299-304.
  • [25] Cristaldi L., Ferrero A., Mathematical foundations of the instantaneous power concept: an algebraic approach, European Trans. on Electrical Power, (ETEP), 6, (1996), No. 5, 305-309.
  • [26] Peng F.Z., Application Issues of Active Power Filters, IEEE Industry Applications Magazine, 4, (1998), No. 5, 21-30.
  • [27] Peng F.Z., Akagi H., Nabae A., A New Approach to harmonic Compensation in Power Systems - A Combined system of shunt passive and series active filters, IEEE Trans on Industry Applications, 26, (1990), No.6, (1990), 983-990.
  • [28] Akagi H., Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution systems, IEEE Trans. Power Delivery, 12, (1997), 354–363.
  • [29] Akagi H., Fujita H., Wada K., A shunt active filter based on voltage detection for harmonic termination of a radial power distribution line, IEEE Trans on Industry Applications., 35, (1999), 638–645.
  • [30] Jintakosonwit P., Fujita H., Akagi H., S.Ogasawara: “Implementation and Performance of Cooperative Control of Shunt Active Filters for Harmonic Damping Throughout a Power Distribution System, IEEE Trans on Industry Applications, 39, (2003), No.2, 556–563.
  • [31] Lee T.L., Cheng P.T., Design of a new cooperative harmonic filtering strategy for the distributed generation systems, IEEE IAS 40th Annual Meeting (2005), 549-556.
  • [32] Cheng P.T., Lee T.L., Analysis of harmonic damping effect of the distributed active filter system, IEEJ Trans. Ind. Applicat., 126, (2006), No. 5, 605-614.
  • [33] Tenti P., Tedeschi E., Mattavelli P., Compensation Techniques based on Reactive Power Conservation, Seventh International Workshop on Power Definition and Measurements under Nonsinusoidal Conditions, (2006), Cagliari, Italy.
  • [34] Cheng P.T., Lee T. L., Distributed active filter systems (DAFS): A new approach to power systems harmonics, IEEE Trans. Ind. Applicat, 42, (2006), No. 5, 1301-1309.
  • [35] Cheng P.T., Lee T. L., Akagi H., Fujita H., A Dynamic Tuning Method for Distributed Active Filter Systems, IEEE IAS 41th Annual Meeting (2006), 175 - 182.
  • [36] Tedeschi E., Tenti P., Mattavelli P., Cooperative Operation of Active Power Filters by Instantaneous Complex Power Control, Proc. of the 7th Int. Conf .on Power Electronics and Drive Systems (PEDS 07), (2007), Bangkok.
  • [37] Mattavelli P., A closed-loop selective harmonic compensation for active filters, IEEE Trans. Industry Applications, 37, (2001), No. 1, 81-89.
  • [38] Tedeschi E., Tenti P., Cooperative Design and Control of Distributed Harmonic and Reactive Compensators, International School on Nonsinusoidal Currents and Compensation. (2008) Lagow, Poland.
  • [39] Tenti P., Willems J.L., Mattavelli P., Tedeschi E., Generalized Symmetrical Components for Periodic Non-Sinusoidal Three-Phase Signals, Seventh International Workshop on Power Definition and Measurements under Nonsinusoidal Conditions, (2006), Cagliari, Italy.
  • [40] Cristaldi L., Ferrero A., A digital method for the identification of the source of distortion in electric power systems, IEEE Transactions on Instrumentation and Measurement, 44, (1994), No. 1, 14-18.
  • [41] Li C., Xu W., Tayjasant T., A Critical Impedance – Based Method for Identifying Harmonic Sources, IEEE Transations on Power Delivery, 19, (2004), No. 2, 671-678.
  • [42] Pavas A., Staudt V., Torres-Sánchez H., Discussion on existing methodologies for the resposabilities assigment problem, International School on Nonsinusoidal Currents and Compensation. (2008), Lagow, Poland.
  • [43] Pavas A., Statut V., Torres-Sánchez H., Experimental investigation of existing Methodologies for the respossibility assignment problem, IEEE Power Tech, (2009), Bucharest.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0031-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.