Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Przegląd Elektrotechniczny

Tytuł artykułu

Superconducting Electrical Machines - State of the Art

Autorzy Gieras, J. 
Treść / Zawartość
Warianty tytułu
PL Maszyny elektryczne nadprzewodzące - stan obecny i perspektywy rozwoju
Języki publikacji EN
EN The paper contains a review of recent advancements in high temperature superconducting (HTS) machines. With the discovery of HTS cuprate-perovskite ceramic materials in 1986, the United States almost immediately resurrected interest in superconducting applications. The U.S. Department of Energy (DoE) and Defense Advanced Research Projects Agency (DARPA) have taken the lead in research and development of HTS electric machines and other HTS electric power applications. Recent developments in HTS electrical machines in Europe and Japan have been summarized too. The paper considers only those developments in HTS machines, which have been completed with working prototypes that passed laboratory tests. Fundamentals of superconductivity, HTS 1st generation (BSCCO) wires, 2nd generation (YBCO) wires and bulk HTS have been included.
PL Artykuł zawiera przegląd ostatnich postępów w maszynach elektrycznych nadprzewodzących wysokotemperaturowych (HTS). Wraz z odkryciem wysokotemperaturowych materiałów ceramicznych (kupratow-perowskitow) w 1986 roku, Stany Zjednoczone niemal natychmiast reaktywowały zainteresowania w zastosowaniach nadprzewodnictwa. Departament d/s Energii (DoE) oraz Agencja d/s Zaawansowanych Projektów Badawczych dla Obrony (DARPA) podjęły rolę kierowniczą w badaniach i rozwoju wysokotemperaturowych maszyn elektrycznych oraz innych zastosowań nadprzewodnictwa wysokotemperaturowego w energetyce. Najnowsze wyniki badan rozwojowych w Europie oraz Japonii zostały również przedstawione. Rozważono tylko te badania rozwojowe, które zostały zakończone wykonaniem prototypów oraz pozytywnymi wynikami badan laboratoryjnych na prototypach. Podano również podstawy nadprzewodnictwa oraz scharakteryzowano naprzewodniki wysokotemperaturowe I generacji (BSCCO), II generacji (YBCO), a także nadprzewodniki masywne.
Słowa kluczowe
PL nadprzewodnictwo   maszyna elektryczna  
EN superconductivity   electric machine  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2009
Tom R. 85, nr 12
Strony 1--19
Opis fizyczny Bibliogr. 43 poz., rys., wykr.
autor Gieras, J.
[1] Al-Mosawi M.K., Beduz C., Goddard K., Sykulski J.K., Yang Y., Xu B., Ship K.S., Stoll R., and Stephen, N.G. (2002). Design of a 100 kVA high temperature superconducting demonstration synchronous generator, Elsevier, Physica C (372-376):1539–1542. 2002
[2] Al-Mosawi M.K., Xu B., Beduz C., Goddard K., Sykulski J.K., Yang Y., Stephen N.G. Webb M., Ship K.S., and Stoll R. (2002). 1000 kVA high temperature superconducting generator, ICEC02, pp. 237–240.
[3] American Superconductors (AMSC), Westborough, MA, USA,
[4] Andreev E.N., Chubraeva L.I., Kunaev V.L., and Platonova M.Y. (2004). Development of high voltage superconductive alternator operating with d.c. transmission line, 6th Int. Conf. on Unconventional Electromechanical and Electr. Systems UEES04, Alushta, Ukraine, pp. 945–950.
[5] Bardeen J., Cooper, L.N., and Schrieffer J.R. (1957). Theory of superconductivity, Phys. Review, 108:1175–1204.
[6] Barnes P.N. (2007). Advancing YBCO-coated conductors for use on air platforms, Int. Journal of Appl. Ceramic Technology, 4(3):242-249.
[7] Bednorz J.G., and Mueller K.A. (1986). Possible high Tc superconductivity in the Ba-La-Cu-O system, Zeitschrift fur Physics B – Condensed Matter, 64:189–193.
[8] Blaugher R.D., Parker J.H., and McCabria J.L. (1977). High speed superconducting generator, IEEE Trans. MAG-13(1):755–758.
[9] Blaugher R. D. (1994). U.S. technological competitive position, Wire Development Workshop, U.S. DoE, St. Petersburg, FL, USA.
[10] Blaugher R.D. (1997). Low-calorie, high energy, IEEE Spectrum, 7:36–42.
[11] Bromberg L., Torti R., and Tekula M. (1999). Multipole magnets usingmonolithic hight temperature superconductor materials: I Quadrupoles. Plasma Science and Fusion Center, Report No. PSFC/RR-99-1, MIT, Cambridge, MA, USA.
[12] Chubraeva L.I. (2004). Prospects on power applications of high temperature superconductivity, invited paper, 6th Int. Conf. on Unconventional Electromechanical and Electr. Systems UEES04, Alushta, Ukraine, pp. 53–58.
[13] Eckels P.W. and Snitchler G. (2005). 5 MW high temperature superconductor ship propulsion motor design and test results, Naval Engineers Journal, Fall Issue:31–36.
[14] Felton M. (2006). Megawatt generator addresses space and electricity needs for next generation of commercial and military aircrafts, TechUpdate — A Quarterly Newsletter for MDA Technology Transfer, Summer Issue.
[15] Gieras J.F. (2008). Advancements in electric machines, Springer, Dordrecht–Boston–London.
[16] Hussennether V., Oomen M., Legissa M., and Neumueller H.W. (2004).DC and AC properties of Bi-2223 cabled conductors designed for highcurrent applications, Physica C, 401:135–139.
[17] Iwakuma M., Hase Y., Satou T., Tomioka, A., Iijima Y., Saitoh T., Izumi T., Yamada Y., and Shiohara Y. (2006). Power application of YBCO superconducting tapes in Japan: transformers and motors, Int. Workshop on Coated Conductors for Applications CCA06, Ludwigsburg, Germany, 2-page abstract.
[18] Iwakuma M., Tomioka A., Konno M., Hase Y., Satou T., Iijima Y., Saitoh T., Yamada Y., Izumi T., and Shiohara Y. (2007). Development of a 15 kW motor with a fixed YBCO superconducting field winding, IEEE Trans. Appl. Superconductivity, 17(2):1607–1610.
[19] Kalsi S. (2003). A small-size superconducting generator concept, Int. Electr. Machines and Drives Conf., IEMDC03, Madison, WI, USA, pp. 24–28.
[20] Kennett R.J. (1981). Advanced generating system technology, Aicraft Electrical Power Systems SP-500 Conf., SAE, Warrendale, PA, USA, pp. 35–41.
[21] King J., and Ritchey I. (2005). Marine propulsion: The transport technology for the 21st century?, Ingenia, pp. 7-14.
[22] Kitano Seiki Co., Ltd.,
[23] Morita G., Nakamura T., and Muta I. (2006). Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit, Superconductor Science and Techn., 19:473–478.
[24] Nagao K., Nakamura T., Nishimura, T., Ogama, Y., Kashima N., Nagaya S., Suzuki K., Izumi T., and Shiohara Y. (2008). Development and fundamental characteristics of YBCO superconducting inductionsynchronous motor operated in liquid nitrogen, Superconductor Science and Techn., 21(1):015022(5pp).
[25] Nakamura T., Miyake H., Ogama Y., Morita G., Muta I., and Hoshino T. (2006). Fabrication and characteristics of HTS induction motor by the use of Bi-2223/Ag squirrel-cage rotor, IEEE Trans. Applied Superconductivity, 16(2):1469–1472.
[26] Nakamura T., Ogama Y., Miyake H., Nagao, K., and Nishimura T. (2007). Novel rotating characteristics of a squirrel-cage-type HTS induction/ synchronous motor, Superconductor Science and Technology, 20(6):911–918.
[27] Navigant Consulting, Burlington, MA, USA,
[28] Neum¨uller H.W., Nick W., Wacker B., Frank M., Nerowski G., Frauenhofer J., Rzadki W., and Hartig R. (2006). Advances in and prospects for development of high-temperature superconductor rotating machines at Siemens, Superconductor Science and Techn., 19:114-117.
[29] Neum¨uller H.W., Klaus G., and Nick W. (2006). Status and prospects of HTS synchronous machines, Int. Conf. on Modern Materials and Techn. CIMTEC06, Acireale, Sicily, Italy.
[30] Nexans — global expert in cables and cabling systems, Paris, France,
[31] Okazaki T., Hayashi K., and Sato K. (2006). Industrial application of HTS coils using next-generation BSCCO Wire, SEI Technical Review, No. 61, pp. 24–28.
[32] Parker J.H., Blaugher R.D., Patterson A., and McCabria, J.L. (1975). A high speed superconducting rotor, IEEE Trans. MAG- 11(2):640–644.
[33] Pazik J.C. (2006). ONR science and technology for integrated systems approach for the all electric force, keynote presentation, Electric Machine Technology Symp. EMTS 2006, Philadelphia, PA, USA.
[34] Research, development and manufacture in high tech areas, Oswald Elektromotoren, Miltenberg, Germany,
[35] Schiferl R. (2004). Development of ultra efficient HTS electric motor systems, 2004 Annual Superconductivity Peer Review Meeting, Washington DC, USA.
[36] Sivasubramaniam K., Laskaris E.T., Shah M.R., Bray J.W., and Garrigan N.R. (2006). HTS HIA generator and motor for naval applications, Electric Machine Technology Symposium EMTS 2006, Philadelphia, PA, USA.
[37] Southall H.L., and Oberly C.E. (1979). System considerations for airborne, high power superconducting generators, IEEE Trans. MAG- 15(1):711–714.
[38] Sugimoto H., Nishikawa T., Tsuda T., Hondou Y., Akita Y., Takeda T., Okazaki T., Ohashi S., and Yoshida Y. (2006). Trial manufacture of liquid nitrogen cooling high temperature superconductivity rotor, Journal of Physics: Conference Series, 43:780-783.
[39] SuperPower, Schenectady, NY, USA,
[40] Takeda T., Togawa H., and Oota, T. (2006). Development of liquid nitrogen-cooled full superconducting motor, IHI Engineering Review, 39(2):89–94.
[41] Tests procedures for synchronous machines, IEEE Guide, Standard 115- 1995 (R2002).
[42] Tolliver J., Rhoads G., Barnes P., Adams S., and Oberly C. (2003). Superconducting generators: enabling airborne directed energy weapons, 1st Int. Energy Conversion Eng. Conf. IECEC03, Portsmouth, VA, USA.
[43] Umans S.D., and Shoykhet B. (2005). Quench in hightemperature superconducting motor field coils: experimental resuls, IEEE IAS Conf. and Meeting, Hong Kong, pp. 1561–1568.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPOK-0026-0001