PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlocalized Fatige Damage of Metals

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
The First European Summer School of Fatigue and Fracture (ESSFF1) and The Ninth Polish-Ukrainian-German Summer of Fracture Mechanics (SSFM9) on NEW RESULTS IN FATIGUE AND FRACTURE. Vol.1 (1,9;19-26.06.2005;Zakopane;Polska)
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
Strony
353--370
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
  • Pisarenko Institute for Problems of Strength of the NAS of Ukraine
Bibliografia
  • [1] MANSON S.S.: Fatigue: A complex subject - Some simple approximations, Experimental Mechamcs, No 7, 1965, pp. 193-226
  • [2] GORITSKY V.M., TERENTIEV V.F.: The Structure and Fatigue Fracture of Metals, Metallurgiya, Moscow, 1980,207 ps (in Russian)
  • [3] TERENTIEV V.F.: Fatigue of Metallic Materials, Nauka, Moscow, 2002, 248 ps (in Russian)
  • [4] KLESNIL M., LUKAS P.: Fatigue of Metallic Materials, Academia, Prague, 1980, 239 ps
  • [5] LUKAS P, POLAK J. (Eds.): Basic Mechanisms in Fatigue of Metals, Academia, Prague, 1988, 440 ps
  • [6] GURIEV A.V., MISHAREV G.M., STOLYARCHUK V.P., et. al.: The influence of stress concentration on the low-cycle fatigue strength of metals, Probl. Prochn., No 11, 1974, pp. 11-15
  • [7] GURIEV A.V., MITIN V.Ya.: Peculiarities of the development of local microinhomogeneous strains and accumulation of fatigue damages in carbon steels, Probl. Prochn., No 11, 1978, pp. 19-23
  • [8] BELUGINA E.A., POPOV S.I., KHUDYAKOVA N.A.: Inhomogeneity of distribution of residual microstrains under cyclic deformation Probl. Prochn., No 7, 1982, pp. 24-36
  • [9] RASMUSSEN K.V., PEDERSEN O.B.: Fatigue of copper polycrystals at 1ow plastic strain amplitudes, Acta Metallurgica, Vol. 28, 1980, pp. 1467-1478 .
  • [10] KLESNIL M., LUKAS P.: Fatigue softening and hardenmg of annealed 1ow-carbon steel, J. Iron and Steel Inst., 1967, pp. 746-749
  • [11] WINNER A.T.: A model for fatigue of copper at low plastic strain amplitudes, The Phi1osophical Magazine A. J. Theor., Exp. and Appl. Phys., 1974, pp.719-738
  • [12] RYBALKO F.P.: Distribution of the p1astic stram inhomogenetiles, Izv. Vuzov, Fizika, No 6, 1958, pp. 79-84, No 1, 1959, pp. 6-14
  • [13] TROSHCHENKO V.T., DRAGAN V.A.: Investigation into the regularities of inelastic deformation and fatigue fracture in torsion, Probl. Prochn., No 5, 1982, pp.3-10
  • [14] AFANASIEV N.N.: Statistical Theoty of the Fatigue Strength of Materials, Izd. AN. Ukr.SSR, Kiev, 1953, 105 ps (in Russian)
  • [15] MOSKVITIN V.V.: P1asticity under Variable Loads, Izd. Mosk. Univ., Moscow, 1965, 363 ps (in Russian)
  • [16] ESIN A.: The microp1astic strain energy criterion applied to fatigue, Trans. ASME, J. Basic Eng, 1967, pp. 1-9
  • [17] TROSHCHENKO V.T.: On the problem of energy dissipation in a material, Fiz. Tverd. Tela, 11, issue 6, 1960, pp. 1060-1069
  • [18] KANDIL F.A.: Potential ambiguity in the determination of the plastic strain range component in LCF testing, Int. J. Fatigue, No 21, 1999, pp. 1013-1018
  • [19] BYCHKOV N.G., PETUKHOV A.N., PUCHKOV I.V.: Some peculiarities of the kinetics of structural material deformation under cyclic elastoplastic deformation, Probl. Prochn., No 11, 1986, pp.7-11
  • [20] FELTNER C., MORROW J.: Microplastic strain hysteresis energy as a criterion for fatigue fracture, Trans. ASME, Ser. D, 83, No 1, 1961, pp.l5-22
  • [21] MORROW J.: Cyclic plastic strain energy and fatigue of metals, ASTM Spec. Tech. Publ., 378, 1965, pp. 45-87
  • [22] MORROW J., TULER F.: Assessment of fatigue strength of alloys Inconel 713 C and Waspalloy at a low number of cycles, Trans. ASME, J. Basic Eng. Vol. 87, Ser. D, No 2,1965
  • [23] TROSHCHENKO V.T.: Deformation and Fracture of Metals under High-Cycle Loading, Naukova Dumka, Kiev, 1981, 343 ps (in Russian)
  • [24] FOMICHEV P.A., TRUBCHANIN I.Yu.: An equation of contour and a shape factor of a hysteresis loop, Probl. Prochn., No 3, 1997, pp. 30-38
  • [25] HALFORD G.R.: The energy required for fatigue, J. Mater., No 1, 1966, pp. 3-18
  • [26] POLAK J., OBRTLIK K., BAJEK M.: Cyclic plasticity in type 316L austenitic stainless steel, Fatigue Fract. Engng Mater. Struct., Vol. 17, No 7, 1994, pp. 773-782
  • [27] HOPKINSON B., WILLIAMS G. T.: The elastic hysteresis of steel, Proc. Roy. Soc., A. 87, 1911-1912, pp. 502-511
  • [28] HAIGH B.P.: Hysteresis in relation to cohesion and fatigue, Trans. Faraday Soc., Vol. 24, 1928, pp.125-l37
  • [29] KUZ'MENKO V.A. KRAVCHENKO V.I.: Energy dissipation in steels at high amplitudes of high-frequency mechanical vibrations. In: Energy Dissipation in Vibration of Mechanical Systems, Izd. AN Ukr.SSR, Kiev, 1963, pp. 184-189 (in Russian)
  • [30] PISARENKO G.S., YAKOVLEV A.P., MATVEEV V.V.: Vibration-Absorbing Properties of Structural Materials, Naukova Dumka, Kiev, 1971, 375 ps (in Russian)
  • [31] MATVEEV V.V., Damping of Vibrations of Deformable Bodies, Naukova Dumka, Kiev, 1985, 263 ps (in Russian)
  • [32] LAZAN B .J.: A study with new equipment of the effects of fatigue stress on the damping capacity and elasticity of mild steel, Trans. Amer. Soc. Metals, Vol. 42, 1950, pp. 499-558
  • [33] TROSHCHENKO V.T., BALYBERDIN V.S., KOKOVIN A.G.: Procedure for investigating energy dissipation in materials under steady-state cyclic loading, Probl. Prochn. No 5, 1970, pp. 18-20
  • [34] TROSHCHENKO V.T., KHAMAZA LA, TSYBANEV G.V.: Strain- and Energy-Based Methods of Accelerated Determination of Fatigue Limits of Metals, Naukova Dumka, Kiev, 1979, 174 ps (in Russian)
  • [35] TROSHCHENKO V.T.: High-Cycle Fatigue and Inelasticity of Metals. Multiaxial and Fatigue Design, ESIS 21 (Edited by A. Pineau, G. Gailltaud and T.E. Lindley), London, 1996, pp. 335-348
  • [36] TROSHCHENKO V. T.: Interrelation between inelasticity and highcycle fatigue o f metals, Advances in Fracture Research, Pergamon Press, Vol. 3, 1997, pp. 1261-1273
  • [37] BEGA N.D., ZASIMCHUK E.E., FIRSTOV S.A.: Localization of deformation and fatigue of molybdenum single crystals, Doklady AN SSSR, Vol.224, No 2, pp. 337-340 (in Russian)
  • [38] TROSHCHENKO V.T., POKROVSKY V.V., PROKOPENKO A.V.: Fracture Toughness of Metais under Cyclic Loading, Naukova Dumka, Kiev, 1987, 252 ps (in Russian)
  • [39] TROSHCHENKO V.T.: The criterion of fatigue strength of metais and alloys based on the consideration of energy dissipation. In: Energy Dissipation in Vibrations of Elastic Systems, Naukova Dumka, Kiev, 1966, pp. 168- 177 (in Russian)
  • [40] DE-GUANO SRANO, WEI-XING YAO: A nonlinear damage model for uniaxial fatigue, Int. J. Fatigue, No 2, 1999, pp.187-294
  • [41] LAGODA T.: Energy model for fatigue life estimation under uniaxial random loading. Part 1: The model elaboration, Int. J. Fatigue, No 6, 2001, pp. 467-480
  • [42] TROSHCHENKO V.T., SHESTOPAL L.F.: Investigation of the regularities in the fatigue fracture and inelastic deformation of metals in torsion, Probl. Prochn. No 5, 1972, pp. 15-23
  • [43] TROSHCHENKO V.T., GETMAN A.F.: Investigation into the fatigue strength of some alloys in bending taking into account the stress concentration, Probl. Prochn., No 7, 1974, pp.l4-20
  • [44] TROSHCHENKO V.T., GETMAN A.F., KHAMAZA L.A.: Investigation into load-carrying capacity of specimens under conditions of nonuniform stress state and cyclic loading, Probl. Prochn., No 12, 1970, pp. 14-19
  • [45] TROSHCHENKO V.T., GETMAN A.F.: Study of the effect of small elastoplastic deformation on the load-bearing capacity of specimens with stress concentrators under repeated variable loading, Strength of Materials, No 2, 1972, pp. 13-23
  • [46] PARK J., NELSON D.: Evaluation o fan energy-based approach and critical plane approach for predicting constant-amplitude multiaxial fatigue life, Int. J. Fatigue, No 1, 2000, pp.23-39
  • [47] LAGODA T., MACHA E., BEDKOWSKI W.: A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime, Int. J. Fatigue, Vol. 21, No 5, 1999, pp. 431-443
  • [48] SHATIL G., SITH D.J., ELLISON E.G.: High-strain biaxial fatigue of a structural steel, Fatigue Fract. Engng Struct., Vol. 17, No 2, 1994, pp. 159-170
  • [49] TROSHCHENKO V. T., KHAMAZA L .A.: Strain criteria of fatigue fracture accounting for the stress state, Strength of Materials, No 16, 1984,pp.l-7
  • [50] TROSHCHENKO V.T., MITCHENKO E.I.: Predicting endurance in programmed cyclic loading taking into account scattering of the properties, Strength of Materials, No 16, 1984, pp. 1340-1348
  • [51] TROSHCHENKO V.T., KOVAL Yu.I.: Laws of the accumulation of fatigue damage in steels St.45 and 1Kh13 under the influence of programmed variable loads, Strength of Materials, No 5, 1973, pp.l435-1441
  • [52] KHAMAZA L.A., KOVALENKO V.A.: Metals resistance to fatigue fracture and deformation under bifrequency loading, Probl. Prochn., No 10, 1989, pp. 7-18
  • [53] FORREST P.G., TAPSALE H.J.: Some experiments on the alternating stress fatigue of mild steel and aluminurn alloy at elevated temperatures, Proc. Inst. Mech. Eng., Vol. 168, No 29, 1954,pp. 763-772
  • [54] LYALIKOV S.M.: The influence of surface plastic deformation on the characteristics of inelasticity and the fatigue limit of steels St. 29 and 14Kh17N2 under cyclic loading, Probl. Prochn., No 10, 1989, pp.108-110
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0014-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.