PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview and Prospects on Distributed Drive Electric Vehicles and Its Energy Saving Strategy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nowa generacja samochodów elektrycznych z wieloma napędami – DDEV (distributed drive electric vehicles)
Języki publikacji
EN
Abstrakty
EN
Significant research has been directed towards developing the electric vehicle (EV) to reduce the energy consumption and exhaust emissions. Focusing on the distributed drive electric vehicles (DDEVs) offering flexible chassis arrangement and brief drive lines, this paper gives an overview about the basic topologies and characteristics. The energy saving strategy to increase driving range is also discussed. Existing problems and prospects for future research on improvements of topologies, optimized torque distribution and drive system efficiency are analysed as well.
PL
W artykule zaprezentowano przegląd wiedzy na temat nowej generacji samochodów elektrycznych – samochodów z wieloma napędami elektrycznymi – DDEV (distributed drive electric vehicles). Omówiono topologię i charakterystyki tego typu pojazdów oraz strategie oszczędności energii.
Rocznik
Strony
122--125
Opis fizyczny
Bibliogr. 63 poz., schem.
Twórcy
autor
autor
autor
  • Department of Electric Drive System, Clean Energy Vehicle Engineering Centre, NO.4800 Cao an Road, Shanghai 201804, China, 09liuhao@tongji.edu.cn
Bibliografia
  • [1] C. C. Chan. The state of the art of electric and hybrid vehicles. Invited Pater, Proceeding of IEEE, 2002, 90(2), 247-275.
  • [2] Steve Barrett. FCVs will be a key element in European vehicle powertrains portfolio to achieve 2050 goals. Elsevier, Fuel Cells Bulletin, 2011, 2011(1), 12-15.
  • [3] J. V. Mierlo, P. V. Bossche, and G. Maggetto, Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators. Elsevier, Journal of Power Sources, 2004, 128, 76-89.
  • [4] Mingfa Yao, Haifeng Liu, Xuan Feng. The development of lowcarbon vehicles in China. Elsevier, Energy Policy, 2011, 39(9), 5457-5464.
  • [5] Yoichi Hori. Future vehicle driven by electricity and control-research on four-wheel-motored “UOT Electric March II” . IEEE Transactions on Industrial Electronics, 2004, 51(5), 954-967.
  • [6] Christopher Borroni-Bird, Mohsen Shabana. Chevrolet Sequel: Reinventing the automobile. SAE Paper, 2008-01-0421.
  • [7] Nobuyoshi Mutoh, Tadahiko Kato, Kazutoshi Murakami. Front-andrear-wheel-independent-drive-type electric vehicle (FRID EV) taking the lead for next generation Eco-vehicles. SAE Paper, 2011-39-7206.
  • [8] WADA Masayoshi. Research and development of electric vehicles for clean transportation. Journal of Environmental Sciences, 2009, 21(6), 745-749.
  • [9] William F., Robert J. Natkin, Daniel M. Kabat, et al. Ford P2000 hydrogen engine design and vehicle development program. SAE Paper, 2002-01-0240.
  • [10] Nissan ZERO-EMISSION. http://www.nissanzeroemission. com/EN/LEAF/.
  • [11] Nobuyoshi Mutoh, Takuro Kazama, Kazuya Takita. Driving characteristics of an electric vehicle system with independently driven front and rear wheels. IEEE Transactions on Industrial Electronics, 2006, 53(3), 803-813.
  • [12] Nobuyoshi Mutoh, Yuichi Hayano, Hiromichi Yahagi, et al. Electric braking control methods for electric vehicles with independently driven front and rear wheels. IEEE Transactions on Industrial Electronics, 2007, 54(2), 1168-1176.
  • [13] Wikipedia. General Motors Sequel. http://en.wikipedia.org/wiki/General_Motors_Sequel.
  • [14] Douglas Cesiel, Michael C. Gaunt, Brian Daugherty. Development of a steer-by-wire system for the GM Sequel. SAE Paper, 2006-01-1173.
  • [15] Mohan Sundar, Dennis Plunkett. Brake-by-wire, motivation and engineering - GM Sequel. SAE Paper, 2006-01-3194.
  • [16] H. Shimizu, J. Harada, C. Bland, K. Kawakami, and C. Lam. Advanced concepts in electric vehicle design., IEEE Trans. Ind. Electron., 1997, 44, 14–18.
  • [17] M. Terashima, T. Ashikaga, T. Mizuno, and K. Natori. Novel motors and controllers for high-performance electric vehicle with four inwheel motors. IEEE Trans. Ind. Electron., 1997, 44, 28–38.
  • [18] Patent, P2002-247713A . 2002.
  • [19] Hiroichi Yoshida, Hiroshi Shimizu. Development of high performance electric vehicle “Eliica” . Koyo Engineering Journal English Edition, 2005, 168 (E).
  • [20] Yimin Gao, H. Maghbelli, Mehrdad Ehsani, et al. Investigation of proper motor drive characteristics for military vehicle propulsion. SAE paper, 2003-01-2296.
  • [21] Gilsu Choi, Zhuxian Xu, Ming Li, et al. Development of integrated modular motor drive for traction applications. SAE Paper, 2011-01-0344.
  • [22] Dirk van Gogh, Kikuo Emoto, and Hiroshi Shimizu. Form characteristics of an electric vehicle. Journal of Asian Electric Vehicles, 2004, 2(1),571-576.
  • [23] S.I. Sakai, H. Sado, and Y. Hori. Anti-skid control with motor in electric vehicle[J]. Proc.6th Int. Workshop on Advanced Motion Control, 2005, 317–322.
  • [24] E. Esmailzadeh, A.Goodarzi, G.R. Vossoughi. Optimal yaw moment control law for improved vehicle handling. Int. J. Mechatronics, 2003,13 (7), 659-675.
  • [25] Shin-ichiro Sakai, Hideo Sado, and Yoichi Hori. Motion control in an electric vehicle with four independently driven in-wheel motors. IEEE/ASME Transactions on mechatronics, 1999, 4(1), pp. 9-16.
  • [26] E. Esmailzadeh, G. R. Vossoughi, A. Goodarzi. Dynamic modeling and analysis of a four motorized wheels electric vehicle. Vehicle System Dynamics, 2001, 35(3), 163-194.
  • [27] He, P., Hori, Y., Kamachi, et al. Future motion control to be realized by in-wheel motored electric vehicle. The 31st Annual Conference of the IEEE Industrial Electronics Society, IECON 2005, Raliegh, South Carolina, USA.
  • [28] Yoichi Hori, Yasushi Toyoda and Yoshimasa Tsuruoka. Traction control of electric vehicle based on the estimation of road surface condition-basic experimental results using the test EV “UOT Electric March” . Power Conversion Conference, 1997, 1, 1-8.
  • [29] Yee-Pien Yang , Chun-Pin Lo. Current distribution control of dual directly driven wheel motors for electric vehicles. Elsevier, Control Engineering Practice, 2008, 16(11), 1285-1292.
  • [30] Fujimoto H., Fujii K., Takahashi, N. Traction and yaw-rate control of electric vehicle with slip-ratio and cornering stiffness estimation. IEEE Proceedings of the 2007 American Control Conference, 2007. ACC '07, 5742-5747.
  • [31] Rongrong Wang, Yan Chen, Daiwei Feng, et al. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors. Elsevier, Journal of Power Sources, 2011, 3962-3971.
  • [32] Ning Guobao, Wan Gang. The Present research situation of the influences on vehicle vertical performances induced by direct wheel drives system. Automobile Technology, 2007, 1000-3703(2007)03-0021-0.
  • [33] D Purdy. A brief investigation into the effect on suspension motions of high unsprung mass. Journal of Battlefield Technology, 2004, 7(1).
  • [34] Go Nagaya, Yasumichi Wakao, Akihiko Abe. Development of an inwheel drive with advanced dynamic-damper mechanism. JSAE Review, 2003, 24(4), 477-481.
  • [35] Ning Guobao. Research on vertical vibrating negative influences induced by in-wheel motor driving system and countermeasures. Shanghai: Tongji University, 2006.
  • [36] Zhang Huanhuan. Research on the torque coordinating control of in-wheel motor driving electric vehicle. Jilin: Jilin University, 2009.
  • [37] Zhong Zaimin, Chen Xinbo, Wang Xinjian. A novel topology of distributed drive system of EV. China Patent, 201120084385.6. 2011.
  • [38] Chen Xinbo, Liu Hao, et al. A novel in-wheel drive system with fixed gear train of power switch device.China Patent, 201120393987.X. 2011.
  • [39] FAN Jingjing, MAO Ming. A Study of driving force distribution strategy for three-axles electric driving vehicle based on economics. Vehicle & power Technology, 2007, 1009-4687(2007)01-0049-03.
  • [40] Yu Zhuoping, Zhang Lijun, Xiong Lu. Optimized torque distribution control to achieve higher fuel economy of 4wd electric vehicle with four in-wheel motors. Journal of Tongji University (Natural Science), 2005, 33(10).
  • [41] Wang Bo, Luo Yugong, Fan Jingjing, Li Keqiang. A study on driving force distribution of four-wheel-independent drive electric vehicle based on control allocation[J]. Automotive Engineering, 2010, 32(2), 128-132.
  • [42] Junya Yamakawa, Keiji Watanabe. A method of optimal wheel torque determination for independent wheel drive vehicles. Elsevier, Journal of Terramechanics, 2006, 43(3), 269-285.
  • [43] Yan Chen, Junmin Wang. Energy-efficient control allocation with applications on planar motion control of electric ground vehicles. American Control Conference (ACC), 2011, 2719-2724.
  • [44] Yan Chen, Junmin Wang. Fast and global optimal energy-efficient control allocation with applications to over-actuated electric Grodnu vehicles. IEEE Trans. Control Syst. Technol., 2011, PP (99), 1-10.
  • [45] Jiang Shanlin. High-speed permanent magnet synchronous motor loss analysis and temperature field calculation. Harbin: Harbin Institute of Technology, 2010.
  • [46] N. Bianchi, S. Bolognani, F. Luise. Potentials and limits of highspeed PM motors. IEEE Transactions on Industry Applications, 2004,40( 6), 1570-1578.
  • [47] M. Aoulkadi A. Binder, G. Joksimovic. Additional losses in highspeed induction machine-removed rotor test. Proc. of the 11th European Conference on Power Electronics and Applications, EPE, 11-14 Sept. 2005, Dresden, Germany, paper ID 610, 10 pages.
  • [48] Tuyoshi Nonaka, Shogo Makino, Masayuki Hirayama, et al. Efficiency evaluation of new variable magnetic flux motor development of EV motor with wide range high-efficiency drive-. SAE International, 2011-39-7258.
  • [49] J. F. Eastham, M. J. Balchin, T. Betzer, et al. Disc motor with reduced unsprung mass for direct EV wheel drive. Industrial Electronics, ISIE '95, 1995, 2, 569–573.
  • [50] Khwaja M. Rahman, et al. Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system. IEEE Trans. on Industry Applications, 2006, 42(5), 1185-1192.
  • [51] S. L. Ho, Shuangxia Niu, and W. N. Fu. Design and analysis of a novel axial-flux electric machine. IEEE Transactions on Magnetics, 2011, 47(10), 4368-4371.
  • [52] W. Fei, P.C.K. Luk, J. Shen, et al. A novel outer-rotor permanentmagnet flux-switching machine for urban electric vehicle propulsion. 3rd International Conference on Power Electronics Systems and Applications, 2009, 1-6.
  • [53] National Standards of Peoples Republic of China. Drive motor system for electric buses (Draft) . Appendix A. 2010.
  • [54] Narita, K. and Priest, M. Metal-metal friction characteristics and the transmission efficiency of a metal V-belt-type continuously variable transmission. J. Engineering Tribology, 2007, 221(1), 11-26.
  • [55] G Lechner, H Naunheimer. Automotive transmissions: fundamentals, selection, design and application. Springer, 1999, 54-67.
  • [56] Nilabh Srivastava, Imtiaz Haque, 2009, “A review on belt and chain continuously variable transmissions (CVT): Dynamics and control. Elsevier, Mechanism and Machine Theory, Vol. 44, No. 1, pp.19-41.
  • [57] E. Pennestri, F. Freudenstein. The mechanical efficiency of epicyclic gear trains. ASME J. Mech. Des., 1993,115(3),645–651.
  • [58] Ettore Pennestri, Pier Paolo Valentini. A review of formulas for the mechanical efficiency analysis of two degrees-of-freedom epicyclic gear trains.ASME J. Mech. Des., 2003,125(3), 602–608.
  • [59] del Castillo, J. M. The analytical expression of the efficiency of planetary gear trains. Mech. Mach. Theory, 2002, 37 (2), 197-214.
  • [60] Chao Chen.Power flow analysis of compound epicyclic gear transmission. ASME J. Mech. Des.,2011,133(9), 094502 (5 pages).
  • [61] Mantriota, G., and Pennestri, E. ‘‘Theoretical and experimental efficiency analysis of multi degrees-of-freedom epicyclic gear trains. Multibody Syst. Dyn., 2001, 389-408.
  • [62] Cui Li. Study on efficiency of planetary gear train of automatic transmission. Chongqing: Chongqing University, 2005.
  • [63] Liu Feng. Constant velocity driving shaft kinematics and dynamics simulation and experiment analysis. Jilin: Jilin University, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0066-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.