PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of probabilistic three-phase load flow for electrical distribution systems with photovoltaic generators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie metod probabilistycznych do przypadku trójfazowej sieci dystrybucyjnej ze źródłami fotowoltaicznymi
Języki publikacji
EN
Abstrakty
EN
This paper shows how to solve a probabilistic three phase load flow in radial distribution networks with photovoltaic distributed generation (PDG). Voltage regulation is one of the principal problems to be addressed. This research study applies a three phase power flow combined with the Monte Carlo method to solve this problem. Load and PDG are modeled as random variables. A case study is presented. The results obtained show the decrease of the unbalance factor due to the presence of PDG.
PL
W artykule pokazano jak rozwiązać problem trójfazowego przypadkowego obciążenia w sieci dystrybucyjnej ze źródłami fotowoltaicznymi. Do rozwiązania problemu zastosowano metodę Monte Carlo.
Rocznik
Strony
38--42
Opis fizyczny
Bibliogr. 25 poz., schem., tab., wykr.
Twórcy
autor
autor
  • Department of Electrical Engineering, Escuela Politecnica Superior de Linares, University of Jaén, 23700 Linares, Spain, jruiz@ujaen.es
Bibliografia
  • [1] Nara K., Hayashi Y., Ikeda K., Ashizawa T., Application of tabu search to optimal placement of distributed generators, Conference Proceedings IEEE PES Winter Meeting; 1-3 (2001), 918-923.
  • [2] Celli G., Ghiani E., Mocci S., Pilo F., A multiobjective evolutionary algorithm for the sizing and siting of distributed generation, IEEE Transactions on Power Systems, 20 (2005), No.2, 750-757.
  • [3] Caramia P, Carpinelli G, Pagano M, Varilone, P, Probabilistic three-phase load flow for unbalanced electrical distribution systems with wind farms, IET Renewable Power Generation, 1 (2007), No. 2, 115-122.
  • [4] Faiz, J., and Ebrahimpour, H., Precise derating of three-phase induction motors with unbalanced voltages, Energy Conversion and Management, 48 (2007), No. 9, 2579-2586.
  • [5] Hernandez, J.C., Medina, A., Jurado, F., Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders, Renewable Energy, 32 (2007), No. 10, 1768-1789.
  • [6] Borkowska, B., Probabilistic load flow, IEEE Trans PAS, 93 (1974), No. 3, 752–759.
  • [7] Allan, R.N., Borkowska, B., Grigg, C.H., Probabilistic analysis of power flows, Proc. IEE, 121 (1974), No.12,1551–1556.
  • [8] Allan, R.N., Leite da Silva, A.M., Probabilistic load flow using multilinearisations, Proc. IEE, 128 (1981), 280–287.
  • [9] Leite da Silva, A.M., Allan, R.N., Soares, S.M., Arienti, V.L., Probabilistic load flow considering network outages, Proc IEE, 132 (1985), No.3, 139–145.
  • [10] Caramia P, Carpinelli G, Varilone P, Varilone P and Verde, P, Probabilistic three-phase load flow, International Journal of Electrical Power & Energy Systems, 21 (1999), No. 1, 55-69.
  • [11] Eminoglu U, Hocaoglu M H, Distribution Systems Forward/Backward Sweep-based Power Flow Algorithms: A Review and Comparison Study, Electric Power Components and Systems, 37 (2009), No. 1, 91-110.
  • [12] Augugliaro A, Dusonchet L, Favuzza S, A new backward/forward method for solving radial distribution networks with PV nodes, Electric Power Systems Research, 78 (2008), No. 3, 330-336.
  • [13] Cheng CS, Shirmohammadi D, A 3-Phase Power-Flow Method For Real-Time Distribution-System Analysis, IEEE Transactions on Power Systems, 10 (1995), No. 2, 671-678.
  • [14] Zhang X P, Chen H, Asymmetrical 3-Phase Load-Flow Study Based On Symmetrical Component Theory, IEE Proceedings-Generation Transmission and Distribution, 141 (1994), No. 3, 248-252.
  • [15] Hollands, K.G.T., Huget, R.G., A probability density function for the clearness index, with applications, Solar Energy, 30 (1983), No. 3, 195–209.
  • [16] Hollands, K.G.T., Crha, S.J., A probability density function for the diffuse fraction, with applications, Solar Energy, 38 (1987), No.4, 237–245.
  • [17] Papoulis, A., Pillai, S., Probability, Random Variables, and Stochastic Processes, 4th ed., New York: McGraw-Hill, (2002).
  • [18] Ruiz-Rodriguez F J, Gomez-Gonzalez M and Jurado F, Binary Particle Swarm Optimization for Optimization of Photovoltaic Generators in Radial Distribution Systems Using Probabilistic Load Flow, Electric Power Components and Systems, 39 (2011), No. 15, 1667-1684.
  • [19] Ruiz-Rodriguez F J, Hernandez, J.C. and Jurado F, Probabilistic load flow for radial distribution networks with photovoltaic generators, IET Renewable Power Generation, 6 (2012), No.2, 110-121.
  • [20] Jardini, J.A. Tahan C.M.V, Gouvea M.R., Ahn S.U., Figueiredo F.M., Daily load profiles for residential, commercial industrial low voltage consumers, IEEE Transactions on Power Delivery, 15 (2000), 375–380.
  • [21] Kersting W H, Distribution system modeling and analysis, New Mexico: CRC Press, (2002).
  • [22] Anders, G.J., Probability Concepts in Electric Power Systems, New York: John Wiley and Sons, (1990).
  • [23] Meliopoulos, A.P.S., Cokkinides, G.J., Yong Chao, X., A new probabilistic power flow analysis method, IEEE Transactions on Power Systems, 5 (1990), No. 1, 182-190.
  • [24] Allan, R.N., Leite da Silva, A.M., Burchett, R.C., Evaluation methods and accuracy in probabilistic load flow solutions, IEEE Transactions on Power Apparatus and Systems, 100 (1981), No. 5, 2539-2546.
  • [25] Kersting W H, Radial Distribution Test Feeders, Distribution System Analysis Subcommittee, (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0065-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.