PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularized Total Variation Image Enhancement Using E.Coli Bacteria Foraging Algorithm: Application to Neutron Radiography Projections

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Poprawa jakości obrazu radiograficznego przy wykorzystaniu algorytmu bazującego na bakterii E.coli
Języki publikacji
EN
Abstrakty
EN
This paper proposes a novel approach based on swarm intelligence and foraging behavior of Escherichia coli Bacteria in the human intestine for enhancing neutron radiography projections blurred during acquisition by the high neutron flux and noise contaminated due to Gamma radiations. This approach uses the total variation (TV) optimization to solve an ill-posed problem. We consider a regularization operator for smoothing task. In comparison with other efficient methods, the proposed Algorithm can be suitable for image enhancement and noise removal.
PL
W artykule zaproponowano wykorzystaniu algorytmu rojowego bazującego na zachowaniu bakterii E.coli do poprawy jakości projekcji radiograficznej. W porównaniu z innymi algorytmami ta metoda charakteryzuje się dobrą możliwością poprawy jakości obrazu i usuwania szumu.
Rocznik
Strony
192--196
Opis fizyczny
Bibliogr. 23 poz., il., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] P.C.Hansen, James G, Deblurring Images : Matrices, Spectra and Filtering, Naqg, Dianne P Learg. SIAM, Society for Industrial and Applied Mathematics. Philadelphia.2006.
  • [2] A. Khireddine, K. Benmahammed, W. Puech, Digital image restoration by Wiener filter in 2D case, Advances in Engineering Software 38 (2007) 513–516.
  • [3] J.L. Lamotte, R. Alt, Comparison of simulated annealing algorithms for image restoration, Mathematics and Computers in Simulation 37 (1994) 1-15. 1994 Elsevier Science B.V.
  • [4] Z. Riéti, Deblurring Images Blurred by the Discrete Gaussian, 0893-9659(95)00042-9. 1995 Elsevier Science Ltd.
  • [5] D. Firsov, S.H. Lui, A fast deblurring algorithm, Applied Mathematics and Computation 183 (2006) 285–291.
  • [6] Julie Kamm, James G. Nagy b, Kronecker product and SVD approximations in image restoration, Linear Algebra and its Applications 284 (1998) 177-192. 1998 Elsevier Science Inc.
  • [7] Yen-Wei Chen, Zensho Nakao, Kouichi Arakaki, Xue Fang, Shinichi Tamura, Restoration of gray images based on a genetic algorithm with Laplacian constraint, Fuzzy Sets and Systems 103 (1999) 285-293, 1999 Elsevier Science.
  • [8] C. A. Z. Barcelos, Y. Chen, Heat Flows and Related Minimization Problem in Image Restoration, Computers and Mathematics with Applications 39 (2000) 81-97.
  • [9] P.E. Undrill, K.Delibassis, Stack Filter Design for Image Restoration Using Genetic Algorithms, Proceedings of the International Conference on Image Processing , 1997.
  • [10] T. Barbu, et al., A PDE variational approach to image denoising and restoration, Nonlinear Analysis: Real World Applications (2008), doi:10.1016/j.nonrwa.2008.01.017. article in press.
  • [11] X. Gu, L. Gao, A new method for parameter estimation of edge-preserving regularization in image restoration, Journal of Computational and Applied Mathematics (2008), doi:10.1016/j.cam. 2008.08.013. Article in press.
  • [12] Z.Jun, W.Zhihui, «A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising », Applied Mathematical Modelling 35 (2011) 2516–2528. doi:10.1016/j.apm.2010.11.049.
  • [13] S.Saadi, M.Bettayeb, A.Guessoum, Optimal Approach for Neutron Images Restoration Using Particle Swarm Optimization (PSO) Algorithm with Regularization, 10: 517-525. J. Applied Sciences, ISSN: 1812-5654, ANSI 2010.
  • [14] Kevin M. Passino, Biomimicry of Bacterial Foraging, for Distributed Optimization and Control, 0272-1708/02/, IEEE Control Systems Magazine, June 2002.
  • [15] Y.Chen, W.Lin, An Improved Bacterial Foraging Optimization, Proceedings of the 2009 IEEE. International Conference on Robotics and Biomimetics December 19 -23, 2009, Guilin, China. 978-1-4244-4775-6/09© 2009 IEEE.
  • [16] B.Niu, B.Xue, “A Novel Bacterial Foraging Optimizer with Linear Decreasing Chemotaxis Step”, 978-1-4244-5874-5/10 ©2010 IEEE.
  • [17] M.S. Li, T.Y. Ji, W.J. Tang, Q.H. Wu, J.R. Saunders, Bacterial foraging algorithm with varying population, doi:10.1016/j.biosystems.2010.03.003. BioSystems 100 (2010) 185–197.
  • [18] D.Krawczyk,Stand,M.Rudnicki,Regularization Parameter Selection in Discrete Ill–Posed Problems –The Use of The UCurve, Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 2, 157–164.
  • [19] L. Rudin, S. Osher and E. Fatemi, Nonlinear Total Variation based noise removal algorithms, Physica D., 60:259–268, 1992.
  • [20] A. Chambolle, An algorithm for Total Variation minimization and applications. Journal of Mathematical Imaging and Vision, 20:89–97, 2004.
  • [21] W. J. Tang, Q. H. Wu, J. R. Saunders., A Bacterial Swarming Algorithm For Global Optimization, 2007 IEEE Congress on Evolutionary Computation (CEC 2007). 1-4244-1340-0/07/c_2007 IEEE.
  • [22] C. S. Daivs, “Statistical Methods for the Analysis of Repeated Measurements”, Springer, 2002.
  • [23] F. Kharfi, L. Boukerdja, A. Attari, M. Abbaci, A. Boucenna,Implementation of neutron tomography around the Algerian Es-Salam research reactor: preliminary studies and first steps, NIM in Physics Research A 542 (2005) 213–21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0063-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.