PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hardware Design of Image Channel Denoiser for FPGA Embedded Systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projekt układu odszumiania w systemie FPGA
Języki publikacji
EN
Abstrakty
EN
In this article an FPGA-based image channel denoiser using a 1D-standard-LMS algorithm is proposed. The designed core is written in VHDL93 language as basis of 1D-FIR adaptive filter. The proposed core is FPGA-brand-independent, hence can be ported on any brand to create a system-on-chip (SoC). Although using a pure-hardware implementation results in better performance, it is more complex than other structures such as digital signal processors and Hardware/Software co-designs. The results show improvements in area-resource utilization and convergence speed in the designed pure-hardware channel denoiser core.
PL
Zaproponowano metodę usuwania szumów w systemie FPGA bazującą na algorytmie LMS i 1D-SOI filtrze adapatacyjnym. Przedstawiono możliwości zastosowania metody a gotowym układzie zintegrowanym.
Rocznik
Strony
165--167
Opis fizyczny
Bibliogr. 19 poz., schem., tab., wykr
Twórcy
Bibliografia
  • [1] O. Sharifi-Tehrani, Novel Hardware-Efficient Design of LMS-based Adaptive FIR Filter Utilizing Finite State Machine and Block-RAM, Przeglad Elektrotechniczny, 87 (2011), No. 7, 240-244.
  • [2] O. Sharifi-Tehrani and M. Ashourian, An FPGA-Based Implementation of ADALINE Neural Network with Low Resource Utilization and Fast Convergence, Przeglad Elektrotechniczny, 86 (2010), No. 12, 288-292.
  • [3] S.M. Kuo, D.R. Morgan, “Active noise control a tutorial review,” IEEE Proc., Vol. 78, pp. 943-973, 1999.
  • [4] O. Sharifi-Tehrani, M. Ashourian, P. Moallem, “An FPGA-Based Implementation of Fixed-Point Standard-LMS Algorithm with Low Resource Utilization and Fast Convergence,” J. Inter. Rev. on Comp. and Soft. (IReCOS), Vol. 5(4), pp. 436-444, 2010.
  • [5] D. Alberto, E. Falletti, L. Ferrero, R. Garello, M. Greco, M. Maggiora, “FPGA implementation of digital filters for nuclear detectors,” J. Nuclear Inst. and Meth. in Phys. Res., Vol. 611, pp. 99-104, 2009.
  • [6] Y.H. Seo, H.J. Choi, J.S. Yoo, D.W. Kim, “An architecture of a highspeed digital hologram generator based on FPGA,” J. Sys. Arch., Vol. 56, pp. 27-37, 2010.
  • [7] K.S. Chaitanya, P. Muralidhar, C.C. Rama Rao, “Implementation of reconfigurable adaptive filtering algorithms,” International Conference on Signal Processing Ssytems (ICSPS), Singapore, 2009, pp. 287-291.
  • [8] T. Aboulnasr, “A robust variable step-size LMS-type algorithm: analysis and simulations,” IEEE Trans. on Signal Proc., Vol. 45(3), pp. 631-639, 1997.
  • [9] W. Peng, B. Farhang-Boroujeny, “A new class of gradient adaptive step-size LMS algorithm,” IEEE Trans. on Signal Proc., Vol. 49(4), pp. 805-810, 2001.
  • [10] K. Matsubara, K. Nishikawa, “A New Pipelined Architecture of the LMS Algorithm without Degradation of Convergence Characteristics,” IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP), Munich, Germany, 1997, Vol. 5(4), pp.4125-4128.
  • [11] H. Zheng-wei, X. Zhi-yuan, ”Application of pipeline technique in realization of LMS algorithm,” J. North China Electric Power Univ., Vol. 31(3), pp. 93-96, 2004.
  • [12] Y. Yi, R. Woods, L.K. Ting, C.F.N. Cowan, “High speed FPGAbased implementations of delayed-LMS filters,” J. VLSI Sig. Proc., Vol. 39, pp. 113-131, 2005.
  • [13] A. Ahmedsaid, A. Amira, “Accelerating SVD on reconfigurable hardware for image denoising,” International Conference on Image Processing, 2004, pp. 259-262.
  • [14] Zh. Min, L. Feng, L. Jian-yu, “The research of real-time image clarity processing method based on FPGA,” IEEE Int. Sym.on IT in Medicine & Education (ITIME ‘09), Jinan, 2009, pp. 1302-1306.
  • [15] Y. Hu, H. Ji, “Research on image median filtering algorithm and its fpga implementation,” WRI Global Congress on Intelligent Ssytems (GCIS ‘09), Xiamen, 2009, pp. 226-230.
  • [16] A. Gabiger, M. Kube, R. Weigel, “A synchronous FPGA design of a bilateral filter for image processing,” Annual Conference on Industrial electronics (IECON ‘09), Porto, 2009, pp. 1990-1995.
  • [17] J.M. Ramirez, et al., “An fpga-based architecture for linear and morphological image filtering,” 20th International Conference on Electronics, Communications and Computer (CONIELECOMP), Cholula, 2010, pp. 90-95.
  • [18] B. Rajan, S. Ravi, “Fpga based hardware implementation of image filter with dynamic reconfiguration architecture,” Inter. Journ. Of Comp. Scie. and Net. Secu., V. 6(12), 121-127, 2006.
  • [19] S. Haykin, Adaptive Filter Theory. Prentice Hall, Upper Saddle River, NJ, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0063-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.