Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Nieliniowy analityczny model samowzbudnych połączonych szeregowo generatorów synchronicznych
Języki publikacji
Abstrakty
In the present paper, first a magnetization current base model is introduced for the electrical machine analyzing that saturation is occurred for the phase that its current entered to saturation region. Other part of machine may be saturated or in the linear condition in order of their currents. Then a new analytical extended Poincare's map is introduced for modelling of self excited series connected synchronous generators in saturated conditions. Using the non-linear control theory, an analytical first order Poincare's map of the machines is computed. Then extended Poincare's map of the machine is introduced. After that characteristic multipliers of the self excited series connected synchronous generator are determined. Nonlinearity of the machine can be modelled with the new map and stability analysis of the system is investigated. The new map is capable for modelling, control, bifurcation and chaos analysis in the non-linear (saturation) conditions. Finally the simulation results of the new extended Poincare's map with experimental laboratory set-up results are compared. The results show that the new Poincare's map is an effective method for modelling and analysis of any ac electrical machines.
Wprowadzono model prądu magnesującego maszyny elektrycznej w rejonie nasycenia do analizy stanu nasycenia samowzbudnych generatorów synchronicznych. Wykorzystano model Poincare. Zamodelowano nieliniowość maszyny i obliczono warunki stabilności. Rezultaty symulacji pokazują że zaproponowany model może być wykorzystany do analizy różnych maszyn elektrycznych AC.
Wydawca
Czasopismo
Rocznik
Tom
Strony
126--134
Opis fizyczny
Bibliogr. 18 poz., schem., tab., wykr
Twórcy
autor
autor
autor
- Islamic Azad University, Ashrfi Esfahani Highway, Ponak, Tehran, Iran, Shariatmadar@IEEE.org
Bibliografia
- [1] Murthy, S. S., Singh, B., Gupta, S., and Gulati, B. M., General Steady-State Analysis of Three-Phase Self-Excited Induction Generator Feeding Three-Phase Unbalanced Load/Single- Phase Load for Stand-Alone Applications , IEE Proc. Generation, Transmission and Distribution, 150(1), pp. 49-55, Apr. 2003.
- [2] Farret, F. A., Palle, B., and Simoes, M. G., Full Expandable Model of Parallel Self-Excited Induction Generators, IEE Proceedings Electric Power Applications, 152(1), pp. 96 - 102, Jan. 2005.
- [3] Jain, S. K., Sharma, J.D., and Singh, S. P., Transient Performance of Three-Phase Self-Excited Induction Generator During Balanced and Unbalanced Faults, IEE Proc. Generation, Transmission and Distribution, 149(1), pp. 50-57, Jan 2002.
- [4] Huang, M. Y., andWang, L., Sudden Disconnection of an Excitation Capacitor on Transient Synchronous Generator Performance of a Self-Excited Series Connected Synchronous Generator, Power Engineering Society Winter Meeting IEEE, 1(1), pp. 370-374, Jan. 2000.
- [5] Mustafa, A. S., Mohamadein, A. L., and Rashad, E. M.,Application of Floquets Theory to the Analysis of Series-Connected Wound-Rotor Self-Excited Synchronous Generator, IEEE Trans. Energy Conversion, 8(3), pp. 369-376, September 1993.
- [6] Mustafa, A. S., Mohamadein, A. L., and Rashad, E. M., Analysis of Series-Connected Wound-Rotor Self-Excited Induction Generator, Electric Power Applications, IEE Proc., 140(5), pp. 329-336, Sep. 1993.
- [7] Mohamadein, A. L., Yousef, H. A., and Dessouky, Y.G., Series-Connected Self-Excited Synchronous Generator: Steady State and Transient Behavior , IEEE Trans. Energy Conversion, 14(4), pp. 1108-1114, Dec. 1999.
- [8] Wang, Y. J., and Huang, Y. S. , Analysis of a Stand-Alone Three-Phase Self excited Induction Generator with Unbalanced Loads Using a Two-Port Network Model, Electric Power Applications, IET, 3(5), pp. 445-452, September 2009.
- [9] Chan T. F., Wang W., and Lai L. L., Field Computation and Performance of a Series-Connected Self-Excited Synchronous Generator, IEEE Trans. MAGNETICS, 46(8), pp. 3065-3068,Aug. 2010.
- [10] Banerjee, S., and Verghese, G. C. Non-linear Phenomena inPower Electronics. Attractors, Bifurcations, Chaos, and Nonlinear Control, New York, John Wiley-IEEE Press, 2001.
- [11] Mazumder, S. K., Nayfeh, A. H., and Boroyevich, D., An Investigation into the Fast and Slow-Scale Instabilities of a Single-phase Bidirectional Boost Converter, IEEE Trans. Power Electronics, 18(4), pp. 1063-1069, July 2003.
- [12] Mazumder, S. K., Nayfeh, A. H., and Boroyevich, D., Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a dc-dc Converter, IEEE Trans. Power Electronics, 16(2), pp. 201-216, Mar 2001.
- [13] Zhang, H., Ma, X., Xue, B., and Liu, W., Study of Intermit-tent Bifurcations and Chaos in Boost PFC Converters by Non-linear Discrete Models, Chaos, Solutions and Fractals, 23(2), pp. 431-444, Jan. 2005.
- [14] Shariatmadar, S. M., and Nazarzadeh, J., Modified Poincare Map of Variable Active Passive Reactance for Stability Evaluation With Consideration of Capacitor Mode, 7th IEEE conference on power electronic and drive system, pp.1633-1638,Thailand, May 2007.
- [15] Shariatmadar, S. M., and Nazarzadeh, J., Optimal Output Feedback for Chaos Improvement in AC Variable Active Passive Reactance, IEEE International Conference on Industrial Technology ICIT, pp. 1-6, China, Apr. 2008.
- [16] Wiggins, S., Introduction to Applied Non-linear Dynamical Systems and Chaos, Springer-Verlag, New York, Inc., 1990.
- [17] Rodriguez, O., and Medina, A., Efficient Methodology for the Transient and Periodic Steady-State Analysis of the Synchronous Machine Using a Phase Coordinates Model, IEEE Trans. Energy Conversion, 19(2), pp. 464-466, June 2004.
- [18] Nakamura, J., Applied Numerical Methods with Software, 1stedition, Prentice Hall, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0063-0006