PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical plane approach for multiaxial fatigue of metals

Identyfikatory
Warianty tytułu
Konferencja
Summer School Of Fracture Mechanics. Current Research On Fatigue And Fracture/sympozjum (VII ; 18-22.06.2001 ; Opole - Pokrzywna, Poland)
Języki publikacji
EN
Abstrakty
EN
Some common fatigue criteria applicable to generic plane stress states under sinusoidal loading are reviewed with emphasis to those based on the so-called critical plane approach. Then a multiaxial high-cycle fatigue criterion recently proposed by the authors and based on the critical plane approach is discussed. Such a criterion can be applied to the case of sinusoidal plane stress states, and an extension to random loading is presented. According to this criterion, the critical plane orientation is correlated with the averaged principal stress directions deduced through the weight function method. Then the fatigue failure assessment is performed by considering a nonlinear combination of the maximum normal stress and the shear stress amplitude acting on the critical plane. Finally, relevant experimental tests on brittle (hard) metals, related to sinusoidal as well as random plane stress states, are analysed by applying the proposed criterion, together with other common critical plane criteria.
Rocznik
Tom
Strony
47--66
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
autor
  • Department of Civil Engineering University of Parma, Italy
Bibliografia
  • [1] GARUD Y.S., Multiaxial fatigue: a survey of the state of the art, J. Testing Evaluation 40 (1981) pp. 165-178
  • [2] YOU B-R., LEE S-B., A critical review on multiaxial fatigue assessments of metals, Int. J. Fatigue 18 (1996) pp. 235-244
  • [3] GOUGH H.J., POLLARD H.V., CLENSHAW W.J., Some experiments on the resistance of metals to fatigue under combined stresses, Aeronautical Research Council Reports, R and M 2522, HMSO, London. 1951
  • [4] FINDLEY W.N., A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, J. Engng Industry, Trans. ASME 81 (1959) pp. 301-306
  • [5] BROWN M.W., MILLER K.J., A theory for fatigue failure under multiaxial stress-strain condition, Proc. Inst. Mech. Engrs 187 (1973) pp. 745-755
  • [6] MATAKE T., An explanation on fatigue limit under combined stress, Bull. JSME 20 (1977) pp. 257-263
  • [7] MCDIARMID D.L., A general criterion for high cycle multiaxial fatigue failure, Fatigue Fract. Engng Mater. Struct. 14 (1991) pp. 429-453
  • [8] CARPINTERI A., MACHA E., BRIGHENTI R., SPAGNOLI A.. Expected fracture plane for multiaxial random stress state - Part I: Theoretical aspects of the weight function method. Int. J. Fatigue 21 (1999) pp. 83-88
  • [9] CARPINTERI A., MACHA E., BRIGHENTI R„ SPAGNOLI A., Expected fracture plane for multiaxial random stress state - Part II: Numerical simulation and experimental assessment through the weight function method. Int. J. Fatigue 21 (1999) pp. 89-96
  • [10] CARPINTERI A., BRIGHENTI R., SPAGNOLI A., A fracture plane approach in multiaxial high-cycle fatigue of metals, Fatigue Fract. Engng Mater. Struct. 23 (2000) pp. 355-364
  • [11] CARPINTERI A., SPAGNOLI A., Multiaxial high-cycle fatigue criterion for hard metals, Int. J. Fatigue, 23 (2001) pp. 135-145
  • [12] PAPADOPOULOS I.V., Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the shear stress acting on the critical plane. Fatigue Fract. Engng Mater. Struct. 21 (1998) pp. 269-2S5
  • [13] GOUGH H.J., POLLARD II.V.. The strength of metals under combined alternating stresses, Proc. Inst. Mech. Engrs, V.131 (1935) pp. 3-54
  • [14] LEE S-B., Out-of-phase combined bending and torsion fatigue of steels, Biaxial and Multiaxial Fatigue (Eds Brown M.W., Miller K.J.), Mech. Engng Publications, London, 1989, pp. 621-634.
  • [15] CROSSL AND B., Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. Proc. Int. Conf. On Fatigue of Metals, Inst. Mech. Engrs, London, 1956, pp. 138-149
  • [16] SINES G., Behaviour of metals under complex static and alternating stresses, Metal Fatigue (Eds Sines G., Waisman, J.L.), McGravv Hill, New York, 1959, pp. 145-169
  • [17] GRUBISIC V., SIMBURGER A., Fatigue under combined out-of-phase multiaxial stresses, Proc. Int. Conf. Fatigue Testing and Design, Society of Environmental Engrs, London, 1976, pp. 27.1-27.8
  • [18] PAPADOPOULOS I.V., A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals, Int Jnl Fatigue 16 (1994) pp. 377-384
  • [19] LEIS B.N., An energy-based fatigue and creep-fatigue damage parameter, J. Pressure Vessel Tech., Trans. ASME, V.99 (1977) pp. 524-530
  • [20] GARUD Y.S., A new approach to the evaluation of fatigue under multi-axial loading, Proc. Symp. On Methods for Predicting Material Life in Fatigue, ASME (Eds Ostergren W.J., Whitehead J.R.), New York, 1979, pp. 247-264
  • [21] CARPINTERI A., MACHA E., BRIGHENTI R., SPAGNOLI A., Critical fracture plane under multiaxial random loading by means of Euler angles averaging, Multiaxial Fatigue and Fracture (Eds Macha E., Będkowski W., Lagoda T.), Elsevier Science Ltd, UIC, 1999, p. 166-178.
  • [22] FROUSTEY C., LASSERRE S., Multiaxial fatigue endurance of 30NCD16 steel. Int. J. Fatigue 11 (1989) pp. 169-175
  • [23] CARPINTERI A., SPAGNOLI A., VANTADORI S., Application of a new high-cycle fatigue criterion to biaxial random loading, Proc. 6th Int. Conf. on Bia- xial/Multiaxial Fatigue & Fracture, 2001, Lisboa
  • [24] NISHIHARA T., KAWAMOTO M., The strength of metals under combined alternating bending and torsion with phase difference, Memories of the College of Engineering, Kyoto Imperial University 11 (1945) pp. 85-112
  • [25] ZENNER H., HEIDENREICH R., RICHTER I.Z., Fatigue strength under nonsyn- chronous multiaxial stresses, Mat.-wiss.u.Werkstofftech. 16 (1985) pp. 101-112
  • [26] ROTVEL F., Biaxial fatigue tests with zero mean stresses using tubular specimens, Int. J. Mech. Sci. 12 (1970) pp. 597-613
  • [27] ACHTELIK H., BĘDKOWSKI W., GRZELAK J., MACHA E., Fatigue life of 10HNAP steel under syncronous random bending and torsion. Proc. 4th Int. Conf. on Biaxial/ Multiaxial Fatigue & Fracture, Paris, 1994, pp. 421-434
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOG-0020-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.