PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional discrete-time Lyapunov cone-systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Stożkowe dyskretne układy Lapunowa ułamkowego rzędu
Języki publikacji
EN
Abstrakty
EN
The fractional discrete-time Lyapunov cone-systems are introduced. The necessary and sufficient conditions for being the cone system, reachability, controllability to zero and observability of the systems are established. The sufficient conditions for stability are given. The notion of the dual fractional Lyapunov cone-system is introduced and the relationship between the reachability and observability is given. The considerations are illustrated on the numerical example.
PL
Praca przedstawia stożkowe dyskretne układy Lapunowa ułamkowego rzędu. Ustanowione są warunki konieczne i wystarczające bycia układem stożkowym, osiągalności, sterowalności do zera i obserwowalności dla tego typu układów. Przedstawione są również układy dualne do stożkowych dyskretnych układów Lapunowa ułamkowego rzędu oraz związek między osiągalnością i obserwowalnością. Rozważania są zilustrowane na przykładach numerycznych.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
Bibliografia
  • 1. Benvenuti L. and Farina L., A tutorial on positive realization problem, IEEE Trans. Autom. Control, vol. 49, No 5, 2004, pp. 651-664.
  • 2. Bologna M. and Grigolini P., Physics of Fractal Operators. Springer-Verlag, New York, 2003.
  • 3. Busłowicz M. and Kaczorek T., Reachability and minimum energy control of positive linear discrete-time systems with one delay, 12th Mediterranean Conference on Control and Automation, June 6-9, 2004, Kusadasi, Izmir, Turkey.
  • 4. Dzieliński A. and Sierociuk D.. Stability of discrete fractional order state-space systems. In Proceedings of 2nd IFAC Workshop on Fractional Differentiation and its Applications. IFAC FDA’06, 2006.
  • 5. Farina L. and Rinaldi S., Positive Linear Systems; Theory and Applications, J. Wiley, New York 2000.
  • 6. Ferreira N.M.F. and Machado I.A.T., Fractional-order hybrid control of robotic manipulators. Proc. 11th Int. Conf. Advanced Robotics, ICAR’2003, Coimbra, Portugal, 2003, pp. 393-398.
  • 7. Gałkowski K., Fractional polynomials and nD systems. Proc IEEE Int. Symp. Circuits and Systems, ISCAS’2005, Kobe, Japan, CD-ROM.
  • 8. Kaczorek T., Positive 1D and 2D systems, Springer Verlag, London 2001.
  • 9. Kaczorek T., Vectors and Matrices in Automation and Electrotechnics, Wydawnictwo Naukowo-Techniczne, Warszawa 1998 (in Polish).
  • 10. Kaczorek T., New reachability and observability tests for positive linear discrete-time systems, Bull. Pol. Acad. Sci. Techn. vol. 55, No. 1, 2007.
  • 11. Kaczorek T., Realization problem for positive discrete-time systems with delay, System Science, vol. 30, No. 4, 2004, pp.117-130.
  • 12. Kaczorek T., Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, Int. J. Appl. Math. Comp. Sci. 2006, vol. 16, No. 2, pp. 101-106.
  • 13. Kaczorek T., A realization problem for positive continuous-time systems with reduced number of delays, Int. J. Appl. Math. Comp. Sci. 2006, vol. 16, No. 3, pp. 101-117.
  • 14. Kaczorek T., Positive discrete-time linear Lyapunov systems, The 15th Mediterranean Conference of Control and Automation – MED 2007, 27-29 June, Athens.
  • 15. Kaczorek T., Stability of positive discrete-time systems with time-delay, The 8th World Multi-Conference on Systemics, Cybernetics and Informatics, July 18-21, 2004 ~ Órlando, Florida, USA.
  • 16. Kaczorek T., Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotics Control, vol. 6, No. 4, 2007.
  • 17. Kaczorek T., Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Submitted to Journal European Systems Analysis. 2007.
  • 18. Kaczorek T., Reachability and controllability to zero of cone fractional linear systems, Archives of Control Sciences, vol. 17, 2007, No.3, pp. 357-367.
  • 19. Kaczorek T., Computation of realizations of discrete-time cone-systems, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 54, No. 3, 2006.
  • 20. Kaczorek T. and Busłowicz M., Minimal realization problem for positive multivariable linear systems with delay, Int. J. Appl. Math. Comp. Sci. 2004, vol. 14, No. 2, pp. 181-187.
  • 21. Kaczorek T. and Busłowicz M., Recent developments in theory of positive discrete-time linear systems with delays – stability and robust stability, Pomiary, Automatyka, Kontrola, No 9, 2004, pp. 9-12
  • 22. Kaczorek T. and Busłowicz M., Recent developments in theory of positive discrete-time linear systems with delays – reachability, minimum energy control and realization problem Pomiary, Automatyka, Kontrola, No 9, 2004, pp. 12-15.
  • 23. Kaczorek T. and Przyborowski P., Positive continues-time linear Lyapunov systems, Proceedings of The International Conference on Computer as a Tool EUROCON 2007, 9-12 September, Warsaw , pp. 731-737.
  • 24. Kaczorek T. and Przyborowski P., Positive continuous-time linear time-varying Lyapunov systems, Proceedings of The XVI International Conference on Systems Science, 4-6 September 2007, Wroclaw – Poland , vol. I, pp. 140-149.
  • 25. Kaczorek T. and Przyborowski P., Continuous-time linear Lyapunov cone-systems, Proceedings of The 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics, 27 - 30 August 2007, Szczecin – Poland, pp. 225-229.
  • 26. Kaczorek T. and Przyborowski P., Reachability, controllability to zero and observability of the positive discrete-time Lyapunov systems, The Control and Cybernetics Journal, 2007 (in press).
  • 27. Kaczorek T. and Przyborowski P., Positive discrete-time linear Lyapunov systems with delays, Proceedings of The International Workshop "Computational Problems of Electrical Engineering September 14th-16th, 2007, Wilkasy, Poland, Electrical Review (Przegląd Elektrotechniczny), 2k/2007, pp. 12-15.
  • 28. Klamka J., Controllability of dynamical systems, Kluwer Academic Publ. Dordrcht 1991.
  • 29. Miller K. S. and Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations. Willey, New York 1993.
  • 30. Moshrefi-Torbati M. and Hammond K., Physical and geometrical interpretation of fractional operators. J. Franklin Inst., Vol. 335B, no. 6, 1998, pp. 1077-1086.
  • 31. Murty M.S.N. and Apparao B.V., Controllability and observability of Lyapunov systems, Ranchi University Mathematical Journal 2005, vol. 32, pp. 55-65.
  • 32. Nishimoto K., Fractional Calculus. Koriyama: Decartes Press, 1984.
  • 33. Oldham K. B. and Spanier J., The Fractional Calculus. New York: Academmic Press, 1974.
  • 34. Ortigueira M. D., Fractional discrete-time linear systems, Proceedings of the IEE-ICASSP 97, Munich, Germany, IEEE, New York, vol. 3, 2241-2244.
  • 35. Ostalczyk P., The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst, Sci. vol. 31, no. 12, 2000, pp. 1551-1561.
  • 36. Ostalczyk P., Fractional-Order Backward Difference Equivalent Forms Part I – Horner’s Form. Proc. 1-st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, 2004, pp. 342-347.
  • 37. Ostalczyk P., Fractional-Order Backward Difference Equivalent Forms Part II – Polynomial Form. Proc. 1st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, 2004, pp. 348-353.
  • 38. Oustaloup A., La dérivation non entiére. Paris: Hermés, 1995.
  • 39. Oustaloup A., Commande CRONE. Paris, Hermés, 1993.
  • 40. Podlubny I., Fractional Differential Equations. San Diego: Academic Press, 1999.
  • 41. Podlubny I., Geometric and physical interpretation of fractional integration and fractional differentation. Fract. Calc. Appl. Anal. Vol. 5, no. 4, 2002, pp. 367-386.
  • 42. Podlubny I., Dorcak L. and Kostial I., On fractional derivatives, fractional-order systems and PIλDµ-controllers. Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, 1997, pp. 4985-4990.
  • 43. Przyborowski P., Positive Fractional Discrete-time Lyapunov Systems, Submitted to Archives of Control Sciences, 2008.
  • 44. Reyes-Melo M.E., Martinez-Vega J.J., Guerrero-Salazar C.A. and Ortiz-Mendez U., Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order. J. Optoel. Adv. Mat. Vol. 6, no. 3, 2004, pp. 1037-1043.
  • 45. Riu D., Retiére N. and Ivanes M., Turbine generator modeling by non-integer order systems. Proc. IEEE Int. Electric Machines and Drives Conference, IEMDC 2001, Cambridge, MA, 2001, pp. 185-187.
  • 46. Samko S. G., Kilbas A.A. and Maritchev O.I., Fractional Integrals and Derivative. Theory and Applications. London: Gordon&Breach 1993.
  • 47. Sierociuk D. and Dzieliński D., Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci., 2006, vol. 16, no. 1, pp. 129-140.
  • 48. Vinagre B. M., Monje C. A. and Calderon A.J., Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC’02 TW#2: Fractiional calculus Applications in Autiomatic Control and Robotics, 2002.
  • 49. Vinagre B. M. and Feliu V., Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV, 2002, pp. 214-239.
  • 50. Zaborowsky V. and Meylanov R., Informational network traffic model based on fractional calculus. Proc. Int. Conf. Info-tech and Info-net, ICII 2001, Beijing, China, 2001, vol. 1, pp. 58-63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOD-0011-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.