PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pattern formation in centrifugal rapid solidification of Al-Zn alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Sieci krystaliczne powstające w wirowym procesie szybkiego krzepnięcia stopów Al-Zn
Języki publikacji
EN
Abstrakty
EN
The microstructure including layer-by-layer elemental composition of rapidly solidified Al-6.0; 9.4; 15.0 Zn (at %) alloys has been examined. Three distinct types of microstructure are found out in a transverse cross-section of the foils. Nonuniform Zn depth distribution shows depletion of thin (0.02 ěm) surface layers by Zn. The zone at contact foil surface has the highest microhardness value. The effect of Zn content on pattern formation in rapid solidification of the alloys with respect to microhardness on foil transverse cross-section was summarized.
PL
Mikrostruktura stopów Al-6.0; 9.4; 15.0 Zn (w%) otrzymanych w procesie szybkiego zestalania została zbadana włącznie z analizą składu pierwiastkowego warstwa po warstwie. W przekroju poprzecznym folii wyróżniono trzy różne typy mikrostruktur. Nierównomierny rozkład głębokościowy Zn wykazuje zubożenie cienkich (0,02.m) warstw powierzchniowych w Zn. Strefa na powierzchni styku folii charakteryzuje się najwyższą wartością mikrotwardości Omówiono wpływ zawartości Zn na powstawanie struktur krystalicznych w procesie szybkiego krzepnięcia tych stopów w odniesieniu do mikrotwardości na przekroju poprzecznym.
Rocznik
Strony
227--229
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • University of Informatics and Radioelectronics, 6, P. Brovki Str., 220013 Minsk, Belarus, iya.itb@gmail.com
Bibliografia
  • [1] Asta M., Beckermann C., Karma A., Kurz W., Napolitano R., Plapp M., Purdy G., Rappaz M., Trivedi R., Overview No. 146. Solidification microstructures and solid-state parallels: Recent developments, futuredirections, Acta Mater., 57 (2009), 941-971
  • [2] Katgerman L., Dom F., Rapidly solidified aluminium alloys by meltspinning, Mater. Sci. and Eng. A, 375–377 (2004), 1212-1216
  • [3] Wang F., Xiong B., Zhang Y., Zhang Z., Wang Z., Zhu B., Liu H., Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy, Materials and Design, 28 (2007), 1154-1158
  • [4] Matsugi K., Wang Y. , Hatayama T., Yanagisawa O., Kiritani M., Rapid consolidation by spark sintering of rapidly solidified 7075 aluminum alloy powder, Radiation Effects and Defects in Solids, 157 (2002), 233-244
  • [5] Galenko P., Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy, Phys. Rev. B, 65 (2002), 144103-1 – 144103-11
  • [6] Aziz M.J., Tests of Theories for Nonplanar Growth During Rapid Alloy Solidification, in: Solidification Processes and Microstructures : a Symposium in Honor to Wiflried Kurz, Eds. M. Rappaz et al., TMS, Warrendale, PA, 2004, 289-294
  • [7] Komarov F.F., Kumakhov М .A., Tashlykov I.S., Non-Destructive Ion Beam Analysis of Surfaces, Gordon and Breach Science Publisher, New York, 1990
  • [8] Doolittle L.N. Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Insrtum. Methods in Phys. Res. Section B, B9 (1985), 344-351
  • [9] Barradas N.P., Jeynes C., Webb R.P., Simulated annealing analysis of Rutherford backscattering data, Appl. Phys. Lett., 71 (1997), 291-293
  • [10] Tashlykova-Bushkevich I. I., Gutko E.S. , Shepelevich V.G., Microstructure, phase and elemental composition of rapidly solidified Al-Zn alloys, J. Advanced Materials, 12 (2005), 54-61
  • [11] Tashlykova-Bushkevich I. I., Effects of thermal treatment on microstructure of rapidly solidified Al-2.1 at % Mn alloy studied by RBS technique, J. Alloys Compd., 478 (2009), 229-231
  • [12] Miroshnichenko S. I., Quenching from the Liquid State, Metallurgiya, Moscow, 1982 (in Russian)
  • [13] Shepelevich V.G., Gutko E.S., Tashlykova-Bushkevih I.I., Structure and properties of rapidly solidified Al-Zn alloy foils, Physics and Chemistry of Material Treatment, (2008), nr 4, 18-25 (in Russian)
  • [14] Tashlykova-Bushkevich I. I., Shepelevich V.G., Neumerzhytskaya E.Yu., Microstructure and phase composition of Al-V rapidly solidified foil alloys, J. Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, (2007), nr 4, 69-72 (in Russian)
  • [15] Neumerzhytskaya E.Yu, Shepelevich V.G., Structure, properties and thermal stability of rapidly solidified foils of aluminium alloys with chromium, nickel and manganese, Adv. Mater., 4 (2005), 69-73 (in Russian)
  • [16] Tashlykova-Bushkevich I. I., Gutko E.S., Shepelevich V.G., Baraishuk S.M., Structural and phase analysis of rapidly solidified Al-Fe alloys, J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, (2008), nr 2, 310-316
  • [17] Tashlykova-Bushkevic h I. I., Shepelevich V.G., Analysis of microstructure of rapidly solidified Al-Mn alloys, Physics and Chemistry of Material Treatment (2008), nr 5, 65-70 (in Russian)
  • [18] Tashlykova-Bushkevich I., Kozak Cz., Microstructural features of Al-Fe alloy foils, Przegląd Elektrotechniczny (2008), 84, 93-95 (in Russian)
  • [19] Shepelevich V.G., Tashlykova-Bushkevich I. I., Anisovich A.G., Grain structure of rapidly solidified foils of aluminium alloys with low concentration of Fe, Cu, Sb and Gedopes, Physics and Chemistry of Material Treatment (1999), nr 4, 86-91 (in Russian)
  • [20] Tashlykova-Bushkevich I. I., Shepelevich V.G., Dope depth distribution in rapidly solidified Al-Ge and Al-Me (Me = Fe, Cu, Sb) alloys, J. Alloys Compd. (2000), 299, 205-207
  • [21] Nagashio K., Kuribayashi K., Experimental verification of ribbon formation process in chill-block melt spinning, Acta Mater., 54 (2006), 2353-2360
  • [22] Greer A.L., Grain refinement in rapidly solidified allos, Mater. Sci. and Eng. A, 133 (1991), 16-21
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0057-0067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.