PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Projektowanie i synchroniczne sterowanie współpracy kompensatorów mocy biernej

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Cooperative design and control of distributed harmonic and reactive compensators
Języki publikacji
EN
Abstrakty
EN
A theoretical background for the design and coordinated control of multiple compensation equipment acting in the same network is presented. It makes use of instantaneous power terms which are conservative in every network and naturally extend the usual power definitions to the case of distorted voltages and currents. Based on the theoretical approach, a system-level and equipment-level control algorithm is developed, which allows cooperative operation of Static VAR Compensators (SVC) and Active Power Filters (APF).
PL
W artykule przedstawione są teoretyczne podstawy projektowania i synchronicznego sterowania kilku kompensatorów pracujących w tym samym systemie. Metoda oparta jest na zasadzie zachowania mocy chwilowej i w sposób naturalny rozszerza definicje mocy w obwodach z niesinusoidalnymi przebiegami prądu i napięcia. W oparciu o przedstawione podstawy teoretyczne, opracowane są algorytmy sterowania na poziomie systemowym i na poziomie urządzeń, umożliwiające współpracę statycznych kompensatorów mocy biernej (SVC) z Aktywnymi Filtrami Mocy (AFP).
Rocznik
Strony
23--27
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Budeanu C.I., Puissances reactives et fictives, Institute Romain de l.Energie, Bucharest, 1927.
  • [2] Fryze S., Wirk-, Blind-, Scheinleistung in Elektrische Stromkreisen mit nichtsinusformingen Verlauf von Strom undSpannung, ETZ, Bd. 53, (1932), 596-599, 625-627, 700-702.
  • [3] Kuster N.L., Moore W.J.M., On the Definition of Reactive Power under Non-Sinusoidal Condition, IEEE Trans. Power Appar. and Systems, PAS-99 (1980), 1845-1854.
  • [4] Shepherd W., Zakikhani P., Suggested definition of reactive power for nonsinusoidal systems, Proc. Inst. Elec. Eng., 119. (1972), 1361-1362.
  • [5] Depenbrock M., Active and nonactive power components of periodic currents in single- and multi-conductor systems with periodic voltages of arbitrary waveform, ETG Special Report 6, Nonactive Power (Blindleistung), (1980), 17–59, VDE-Verlag.
  • [6] Czarnecki L.S., Orthogonal Decomposition of the Currents in a 3-Phase Nonlinear Asymmetrical Circuit with a Nonsinusoidal Voltage Source, IEEE Trans. on Instrumentation and Measurements, IM-37 (1988), No.1, 30-34.
  • [7] Page C.H., Reactive Power in Non-Sinusoidal Situations. IEEE Trans. of Instrumentation and Measurement, IM-29 (1990), No.4, 420-423.
  • [8] Czarnecki L.S., Scattered and Reactive Current, Voltage, and Power in Circuits with Nonsinusoidal Waveforms and their Compensation, IEEE Trans. on Instrumentation and Measur., IM-40 (1991), No.3, 563-567.
  • [9] Tenti P., Mattavelli P., A Time-Domain Approach to Power Term Definitions under Non-Sinusoidal Conditions, L’Energia Elettrica, 81 (2004), 75-84.
  • [10] Czarnecki L.S., Currents’ Physical Components (CPC) in Crcuits with Nonsinusoidal Voltages and Currents. Part 1: Single-Pase Linear Circuits, Electrical Power Quality and Utilization Journal, Vol. XI (2005), No.2, 3-14.
  • [11] Czarnecki L.S., Minimization of Reactive Power under Nonsinusoidal Conditions. IEEE Trans. on Instrumentation and Measurements, IM-36 (1987), No.1, 18-22.
  • [12] Willems, J.L., Power Factor Correction for Distorted Bus Voltages, Electr. Mach. and Power Syst., 13 (1987), 207-218.
  • [13] Czarnecki L.S., Reactive and Unbalanced Currents Compensation in Three-Phase Asymmetrical Circuits under Nonsinusoidal Conditions, IEEE Trans. IM, IM-38 (1989), 754-759.
  • [14] Czarnecki L.S., Power Factor Improvement of Three-Phase Unbalanced Loads with Nonsinusoidal Supply Voltages, Eur. Trans. on Electr. Power Eng. ETEP, 3 (1993), No.1, 67-72.
  • [15] Merhej S.J., Nichols W.H., Harmonic Filtering for the Offshore Industry, IEEE Trans. on Industry Applications, 30 (1994), No.3, 533-542.
  • [16] Depenbrock M., Single-Phase Rectifier with Sinusoidal Line Current and Well-Smoothed DC Quantities, Elektrotechni-sche Zeitschrift (ETZ-A), 94 (1973), H.8, 466–471.
  • [17] Akagi H., Kanazawa Y., Nabae A., Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits, Proc. of the Int. Power Electron. Conf., (JIEE IPEC) Tokyo/Japan, (1983), 1375-1386.
  • [18] Akagi H., Kanazawa Y., Nabae A., Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components, IEEE Trans. Ind. Appl., IA-20 (1984), No.3, 625-630.
  • [19] Akagi H., Nabae A., Control Strategy of Active Power Filters Using Multiple Voltage Source PWM Converters", IEEE Trans. on Ind. App., IA-22 (1986), No. 3, 460-465.
  • [20] Akagi H., Nabae A., The p-q Theory in Three-Phase Systems under Non-Sinusoidal Conditions, European Trans. on Electr. Power Engineering, ETEP, 3 (1993), No.1, 27-31.
  • [21] Depenbrock M., The FBD-method, A Generally Applicable Tool For Analyzing Power Relations, IEEE Transactions on Power Systems, 8 (1993), No.2, 381–387.
  • [22] Depenbrock M., Marshall D.A., van Wyk J.D., Formulating Requirements for a Universally Applicable Power Theory as Control Algorithm in Power Compensators, Europ. Trans. on Electrical Power Eng., ETEP, 4 (1994), No.6, 445-455.
  • [23] Rossetto L., Tenti P., Evaluation of Instantaneous Power Terms in Multi-Phase Systems: Techniques and Application to Power-Conditioning Equipment, European Trans. on Elec-trical Power, ETEP, 4 (1994), No.6, 469-475.
  • [24] Willems J.L., Mathematical Foundations of the Instantaneous Power Concept: a Geometrical Approach, European Trans. on Electrical Power, ETEP, 6 (1996), No.5, 299-304.
  • [25] Cristaldi L., Ferrero A., Mathematical Foundations of the Instantaneous Power Concept: an Algebraic Approach, Eur. Trans. on Electr. Power, ETEP, 6 (1996), No.5, 305-309.
  • [26] Peng F.Z., Application Issues of Active Power Filter, IEEE Industry Applications Magazine, 4 (1998), No.5, 21-30.
  • [27] Peng F.Z., Akagi H., Nabae A., A New Approach to Harmonic Compensation in Power Systems - A Combined System of Shunt Passive and Series Active Filters, IEEE Trans on Industry Applications, 26 (1990), No.6, 983-990.
  • [28] Akagi A., Control Strategy and Site Selection of a Shunt Active Filter for Damping of Hharmonic Propagation in Power Dstribution Systems, IEEE Trans. Power Delivery, 12 (1997), 54–363.
  • [29] Akagi A., Fujita H., Wada K., A Shunt Active Filter Based on Voltage Detection for Harmonic Termination of a Radial Power Distribution Line, IEEE Trans on Industry Appl., 35 (1999), 638–645.
  • [30] Jintakosonwit P., Fujita H., Akagi H., Ogasawara S., Implementation and Performance of Cooperative Control of Shunt Active Filters for Harmonic Damping Throughout a Power Distribution System, IEEE Trans on Industry Applications., 39, (2003), No.2,. 556–563.
  • [31] Lee T.L., Cheng P.T., Design of a New Cooperative Harmonic Filtering Strategy for the Distributed Generation Syst., IEEE IAS 40th Annual Meeting (2005), 549-556.
  • [32] Cheng P.T., Lee T.L., Analysis of harmonic damping effect of the distributed active filter system, IEEJ Trans. Ind. Appl., 126 (2006), No.5, 605-614.
  • [33] Tenti P., Tedeschi E., Mattavelli P., Compensation Techniques based on Reactive Power Conservation, 7th Intern. Workshop on Power Definition and Measurements under Nonsinusoidal Conditions, Cagliari (Italy), July 2006.
  • [34] Cheng P.T., Lee T.L., Distributed Active Filter Systems (DAFS): A New Approach to Power Systems Harmonics, IEEE Trans. Ind. Appl., 42 (2006), No.5, 1301-1309.
  • [35] Cheng P.T., Lee T.L., Akagi A., Fujita H., A Dynamic Tuning Method for Distributed Active Filter Systems, IEEE IAS 41th Annual Meeting, (2006), 175 - 182.
  • [36] Tedeschi T., Tenti P., Mattavelli P., Cooperative Operation of Active Power Filters by Instantaneous Complex Power Control, Proc. of the 7th Int. Conf .on Power Electronics and Drive Systems (PEDS 07), Bangkok, Nov 2007.
  • [37] Tenti P., Willems J.L., Mattavelli P., Tedeschi E., Generalized Symmetrical Components for Periodic Non-Sinusoidal Three-Phase Signals”, 7th Int. Workshop on Power Definition and Measurements under Nonsinusoidal Conditions, Cagliari (Italy), July 2006.
  • [38] Mattavelli P., A Cosed-Loop Selective Harmonic Compensation for Active Filters, IEEE Trans. Industry Applications, 37 (2001), No.1, 81-89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0043-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.