PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral Method in Multiaxial random fatigue

Identyfikatory
Warianty tytułu
Konferencja
The First European Summer School of Fatique and Fracture (ESSFF1) and The Ninth Polish-Ukrainian-German Summer of Fracture Mechanics (SSFM9) on NEW RESULTS IN FATIGUE AND FRACTURE. Vol.2 (1,9;19-26.06.2005;Zakopane;Polska)
Języki publikacji
EN
Abstrakty
EN
The algorithm for fatigue life calculation with spectral method under random multiaxial loading has been shown. The method consists in extension of the known spectral formulae of fatigue life determination under uniaxial random loading. Power spectral density function of the equivalent stress or strain, determined according to a linear criterion of multiaxial random fatigue, was used. It has been shown that the reduction of the multiaxial stress or strain state to the equivalent one can be performed directly in the frequency domain.
Rocznik
Tom
Strony
113--134
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
  • Technical University of Opole, Department of Mechanics and Machine Design
autor
  • Technical University of Opole, Department of Mechanics and Machine Design
Bibliografia
  • [1] ASTM B 1049-85 (REAPPROVED 1997): Standard practices for cycle counting in fatigue analysis, in: Annual Book of ASTM Standards, Vol. 03.01, Philadelphia 1999, pp. 710-718
  • [2] BENDAT J. S., PIERSOL A. G.: Engineering Applications of Correlation and Spectral Analysis, John Wilcy and Sons Inc., New York, 1980
  • [3] BĘDKOWSKI W., LACHOWICZ C, MACHA E.: Predicted fatigue fracture piane according to variahce method of shear stress under random triaaal stress state, Failure Analysis - Theory and Practice, Proceedings of the 7th European Conference on Fracture (ECF 7), Budapest 1988, Ed. E. Czoboly, EMAS U.K., Vol. I, pp. 281-283
  • [4) BĘDKOWSKI W., MACHA E.: Fatigue fracture piane under multiaxial random loadings - prediction by mriance ofequivalent stress based on the maximum shear and normal stress, Mat. -wiss. u. Werkstofftech., Vol. 23, 1992, pp. 82-94
  • [5] BĘDKOWSKI W., MACHA E.: Fatigue Criterion of the Maximum Strain in the Direction Perpendicutar to a Fracture Piane, Fórtschr. Ber. VDI-Z, Reihe 5, Nr 97, DVI-Verlag GmbH, Dusseldorf, 1985, 70 ps
  • [6] BISHOP N. W. M.: Spectral method of estimating the integrity of structural components subjected to random loading, Handbook of Fatigue Crack Propa¬gation in Metallic Structures, Ed. An. Carpinteri, Elsevier Science B.V„ 1994, pp. 1685-1720
  • [7] BITNER- GREGERSEN E. M., CRAMER E. H.: Uncertainties ofload charac-teristics and fatigue damage of ship structures, Marinę Structures, Vol. 8, 1995, pp. 97-117
  • [8] CHAUDHURY G. K., DOVER W. D.: Fatigue analysis of offshore platforms subject to sea wave loadings, International Journal of Fatigue, Vol. 7, No. 1, 1985, pp. 13-19
  • [9] DIRLIK T.: Application of Computers in Fatigue Analysis, PhD Thesis, UK: University of Warwick, 1985
  • [10] DOWLING N. E.: Fatigue failure prediction for complicated stress- strain histo¬ries, Journal of Materials, Vol. 7, No. 1, 1972, pp. 71-87
  • [11] FU T. T., CEBON D.: Predicting fatigue livesfor bi- modal stress spectral densi-ties, International Journal of Fatigue, Vol. 22, 2000, pp. 11-21
  • [12] GRZELAK J„ ŁAGODA T., MACHA E.: Spectral analysis of the criteria for multiaadal random fatigue. Mat. -wiss. u. Werkstofftech., Vol. 22, 1991, pp. 85-98
  • [13] HARTT W. H., LIN N. K.: A proposed stress history for fatigue testing applica-ble to offshore structures, International Journal of Fatigue, Vol. 8, No. 2, 1986, pp. 91-93
  • [14] HOLMES J. D: Fatigue Ifo under along- wind loading — closed- form solutions, Engineering Structures, VoL 24, 2002, pp. 109-114
  • [15] J1AO G.: A theoretical model for the prediction of fatigue under combined Gaus-sian and impact load, International Journal of Fatigue, Vol. 17, No. 3, 1995, pp. 215-219
  • [16] KORN G. A., KORN T. M.: Mathematical Handbook, 2nd ed., McGraw- Hill Book Company, New York, 1968
  • [17] KOWALEWSKI J.: On the Relationship between Component Life under lrregu-larly Fluctuating and Ordered Load Seąuences, Part 2, DVL Report 249, 1963
  • [18] LIOU H. Y., WU W. F., SHIN C. S.: A modified model for the eslimation of fatigue Ufo derived from rundom vibration theory, Probabilistic Engineering Mechanics, Vol. 14, 1999, pp. 281-288
  • [19] LIU H. J., HU S. R.: Fatigue under nonnormal random stresses using Monte-Carlo method, FATIGUE' 87, Eds. R.O. Ritche and E.A. Starkę Jr. EMAS (U.K.), VoL ni, 1987, pp. 1439-1448
  • [20] ŁAGODA T., MACHA E., NIESŁONY A., MULLER A.: Fatigue life of cast irons GGG40, GGG60 and GTS45 under variable amplitudę tension with torsion, The Archive of Mechanical Engineering, Vol. XLVIII, 2001, pp. 55-69
  • [21] MACHA E.: Mathematical Models ofthe Life to Fracture for Materials Subjected to Random Complex Stress Systems, Scientific Papers of the Institute of Mate¬rials Science and Applied Mechanics of Wrocław Tschnical University, No. 41, Wroc-aw 1979, 99 ps, (in Polish)
  • [22] MACHA E.: Generalizalion of Strain Criteria of Multiaxial Cyclic Fatigue to Random Iutading, VDI Reihe 18, Nr 52 VDI-Verlag, Dusseldorf 1988, 102 ps
  • [23] MACHA E.: Simulation investigations of the position of fatigue fracture piane in materials with biaxial loads. Mat. -wiss. u. Werkstofftech., Nr 20, 1989, Teil I, Heft 4/89, pp. 132-136, Tbil II, Heft 5/89, pp. 153-163
  • [24] MSC/FATIGUE USER'S GUIDE: Vibmtion Fatigue Theory, MSC.Software Cor¬poration, 2002, 1360 ps
  • [25] MILES J.: On the structural fatigue under random loading, Journal of Aeronau-tical Science, Vol. 21, No. 11, 1954, pp. 753-762
  • [26] NIESŁONY A., MACHA E.: Spectral Method. Multiaxial Random Fatigue of Machinę Elements and Structures, Part V, Studies and Monographs 160, TU Opole, 2004, 168 ps (in Polish)
  • [27] PERRUCHET C, VIMONT P.: Rśsistance & la fatigue des maUriaux en con-traintes al&atoires, L'A&onautique et 1'Astronauliąue, No. 47, Vol. 4, 1974, pp. 71-81
  • [28] PITOISET X„ RYCHLIK L. PREUMONT A.: Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations, Fatigue and Fracture of Engineering Materials and Structures, Vol. 24, 2001, pp. 715-727
  • [29] PITOISET X , PREUMONT A., KERNILIS A.: Tools for multiaxial fatigue anal¬ysis of structures submitted to random vibrations, Buropean Conference on Space-craft Structures, Materials and Mechanical Testing, Braunschweig, Germany, 4-6 November 1998, (pdf version)
  • [30] SAKAI S., OKAMURA H.: On the distribution of rainflow rangę for Gaus-sian random processes with bimodal PSD, JSME International Journal, Series A, Vol. 38, No. 4, 1995, pp. 440-445
  • [31] SARKANI S„ KIHL D. P., BEACH j. E.: Fatigue ofwelded joints under narrow-band non- Gaussian loadings, Probabiiistic Engineering Mechanics, Vol. 9, 1994, pp. 179-190
  • [32] SARKANr S., MICHAELOV G., KIHL D. P., BEACH J. B.: Fatigue of welded steel joints under wideband loadings, Probabiiistic Engineering Mechanics, Vol. 11, 1996, pp. 221-227
  • [33] SIGNAL PROCESSING TOOLBOX: UseFs guide, Copyright 1988-2002 by The MathWorks, Inc., Version 6, 1036 ps
  • [34] SONSINO C. M.: Limitation in the use of RMS- mlues and equivalent stresses in mriable amplitudę loading, International Journal of Fatigue, Vol. 11, No. 3, 1989, pp. 142-152
  • [35] SZALA J.: Hypotheses of Fatigue Damage Accumulation, University of Technol¬ogy and Agriculture, Bydgoszcz 1998, ps 175, (in Polish)
  • [36] WIRSCHING P. H., LIGHT M. C: Fatigue under wide band random stresses using rainflow method, Journal of Structural DWision, Vol. 106, No. ST7, 1980, pp. 1593-1607
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0034-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.