PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundry element method in dynamic Feacture mechanics

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
The First European Summer School of Fatique and Fracture (ESSFF1) and The Ninth Polish-Ukrainian-German Summer of Fracture Mechanics (SSFM9) on NEW RESULTS IN FATIGUE AND FRACTURE. Vol.2 (1,9;19-26.06.2005;Zakopane;Polska)
Języki publikacji
EN
Abstrakty
EN
The work shows methods of modeling cracks by the boundary element method (BEM). The application of the BEM to dynamie fraeture mechanies is demonstrated by using the time-domain formulation. The development of the approach, boundary integral equations and the numerical formulation is presented. The methods of computing dynamie stress intensity factors, modeling of crack growth with a variable velocity and contact of crack surfaces are shown. Three numerical examples demonstrate possible applications of the method.
Rocznik
Tom
Strony
73--92
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
  • Department for Strenght of Materials Computational Mechanics Silesian Iniversity of Technology
Bibliografia
  • [1] FREUND L. B.: Dynamie fracture mechanics, Cambridge University Press, Cambridge, 1990.
  • [2] CRUSE T. A.: Boundary element analysis in computational fracture mechanics, Kluwer Academic Publishers, Dordrecht-Boston-London, 1988.
  • [3] ALIABADI M. H., ROOKE D. P.: Numerical fracture mechanics, Computational Mechanics Publications, Southampton, Kluwer Academic Publishers, Dordrecht, 1991.
  • [4] ALIABADI M. H.: Boundary element formulations in fracture mechanics, Appl. Mech. Rev., Vol. 50, No. 2, 1997, pp. 83-96.
  • [5] DOMINGUEZ J.: Boundary elements in dynamics, Computational Mechanics Publications, Southampton, 1993.
  • [6] ZHANG CH., GROSS D.: On wave propagation in elastic solids with cracks, Computational Mechanics Publications, Southampton-Boston, 1997.
  • [7] BESKOS D. E.: Boundary element methods in dynamie analysis: Part II (1986-1996), Appl. Mech. Rev., Vol. 50, 1997, pp. 149-197.
  • [8] TELLES J. C. F„ CASTOR G. S„ GUIMARAES S.: A numerical Green's function approach for boundary element applied to fracture mechanics, Int. J. Numer. Meth. Engng., Vol. 38, 1995, pp. 3259-3274.
  • [9] PORTELA A., ALIABADI M. H„ ROOKE D. P.: The dual boundary element method: effective implementation for crack problems, Int. J. Num. Meth. Eng., Vol. 33, 1992, pp. 1269-1287.
  • [10] NISHIMURA N„ GUO Q. C, KOBAYASHI S.: Boundary integral eąuation methods in elastodynamic crack problems, in Proc. Boundary Elements IX, Vol. 2: Stress Analysis Applications, Eds Brebbia C.A., Wendland W.L. Kuhn G., Computational Mechanics Publications Springer- Yerlag, 1987, pp. 279-291.
  • [11| NISHIMURA N„ GUO Q. C„ KOBAYASHI S.: Elastodynamic crack analysis by BIEM, in Proc. Boundary Element Mcthods in Applied Mechanics, Eds Tanaka M., Cruse T.A., Pcrgamon Press, 1988, pp. 245- 254.
  • [12] ZHANG CH., ACHENBACH J. D.: Time-domain boundary element analysis of dynamie near-tip fields for impact-loaded collinear cracks, Eng. Fracture Mech., Vol. 32, No. 6, 1989, pp. 899-909.
  • [13] ZHANG CH., GROSS D.: A non-hypersingular time-domain BIEM for 3-D transient elastodynamic crack analysis, Int. J. Num. Mcth. Eng., Vol. 36, No. 17, 1993, pp. 2997-3017.
  • [14] ZHANG CH., SAVAIDIS A.: Time-domain BEM for dynamie crack analysis, Math. Comput., Simulat., Vol. 50, 1999, pp. 351-362.
  • [15] HIROSE S., ACHENBACH J. D.: Time-domain boundary element analysis of elastic wave interaction with a crack, Int. .1. Num. Mcth. Eng., Vol. 28, No. 3, 1989, pp. 629-644.
  • [161 HIROSE S., ACHENBACH J.D.: Acoustic emission and near-tip elastodynamic fields of a growing penny-shaped crack, Eng. Fracture Mech., Vol. 39, No. 1, 1991, pp. 21-36.
  • [17] NICHOLSON J. W., METTU S. R.: Computation of dynamie stress intensity factors by tlie time domain boundary integral equation method - I. Analysis, Eng. Fracture Mech., Vol. 31, No. 5, 1988, pp. 759-767.
  • [18] METTU S. R., NICHOLSON J. W.: Computation of dynamie stress intensity factors by the time domain boundary integral equation method - II. Examples, Eng. Fracture Mech., Vol. 31, No. 5, 1988, pp. 769-782.
  • [19] DOMINGUEZ J., GALLEGO R.: Time-domain boundary element analysis of two-dimensional crack problems, in Proc. Boundary Element Mcthods in Engineering, Eds. Annigeri B. S., Tseng B. S., Springer-Verlag, 1990, pp. 362-368.
  • [20] DOMINGUEZ J., GALLEGO R.: Time domain boundary element method for dynamie stress intensity factor computations, Int. J. Num. Meth. Eng., Vol. 33, No. 3, 1992, pp. 635-647.
  • [21] GALLEGO R„ DOMINGUEZ J.: Dynamie crack propagation analysis by moving singular boundary elements, J. Appl. Mech. Trans. ASME, Vol. 59, 1992, pp. 158-162.
  • [22] GALLEGO R„ DOMINGUEZ J.: Hypersingular BEM for transient elastodynamics, Int. J. Numer. Meth. Eng., Vol. 39, 1996, pp. 1681-1705.
  • [23] GALLEGO R., DOMINGUEZ J.: Solving transient dynamie crack problems by the hypersingular boundary element method, Fatigue Fract. Eng. Mater. Struct., Vol. 20, No. 5, 1997, pp. 799-812.
  • [24] METTU S. R., KIM K. S.: An application of the time-domain boundary integral equation method to dynamie crack propagation, Eng. Fracture Mech., Vol. 39, No. 2, 1991, pp. 339-345.
  • [25] SELLIG TH., GROSS D.: Analysis of dynamie crack propagation using a time-domain boundary integral equation method, Int. J. Solids Struć., Vol. 34, 1997, pp. 2087-2103.
  • [26] SEELIG TH., GROSS D.: On the stress wave induced curving of fast running cracks - a numerical study by a time-domain boundary element method, Acta Mechanica, Vol. 132, 1999, pp. 47-61.
  • [27] SEELIG TH., GROSS D„ POTHMANN K.: Numerical simulation of a mixed-mode dynamie fracture experiment, Int. J. Fracture, Vol. 99, 1999, pp. 325-338.
  • [28] WEN P. H., ALIABADI M. H., YOUNG A.: A time-dependent formulation of dual boundary element method for 3D dynamie crack problems, Int. J. Numer. Meth. Eng., Vol. 45, 1999, pp. 1887-1905.
  • [29J FEDELIŃSKI P„ ALIABADI M. H„ ROOKE D. P.: A single-region time- domain BEM for dynamie crack problems, Int. J. Solids Struć., Vol. 32, 1995, pp. 3555-3571.
  • [30] FEDELIŃSKI P„ ALIABADI M.H., ROOKE D.P.: The time-domain DBEM for rapidly growing cracks, Int. J. Numer. Meth. Eng., Vol. 40, 1997, pp. 1555-1572.
  • [31J FEDELIŃSKI P.: The boundary element method in dynamie analysis of dcformable structures with cracks, Scient. Papers Silesian Univ. Tech., Mechanics, Vol. 137, Gliwice, (in Polish), 2000.
  • [32] FEDELIŃSKI P.: Boundary element method in dynamie analysis of cracks, Eng. Anal. Boundary Elem., Vol. 28, 2004, pp. 1135-1147.
  • [33] ERDOGAN F., SIH G. C.: On the crack extension in plates under piane loading and transverse shear, J. Basic Eng.-T. ASME, 1963, pp. 519-527.
  • [34] KANNINEN M. F., POPELAR C. H.: Advanced fracture mechanics, Oxford University Press, 1985.
  • [35] BUI H. D., MAIGRE H., RITTEL D.: A new approach to the experimental determination of the dynamie stress intensity factors, Int. J. Solids Struci., Vol. 46, 1992, pp. 2881-2895.
  • [36] MAIGRE H., RITTEL D.: Mixed-mode quantification for dynamie fracture initiation: Application to the compact compression specimen, Int. J. Solids Struct., Vol. 30, 1993, pp. 3233-3244.
  • [37] WEN P. H., ALIABADI M. H., ROOKE D. P.: An approximate analysis of dynamie contact between crack surfaces, Eng. Anal. Bound. Elem., Vol. 16, 1995, pp. 41-46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0034-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.