Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Rozwiązanie problemów pola elektromagnetycznego o niskiej częstotliwości w dziedzinie czasu
Języki publikacji
Abstrakty
A multi-dimensional systems technique is introduced in this paper for the time-domain solution of low-frequency electromagnetic field problems. The new method establishes a wave equation formulation and in contrast with existing approaches offers precise results even when the frequency range of interest lies at the low end of the spectrum. Launching a discretization process, based on spatially interconnected systems theory, the specific algorithm leads to a robust framework for the analysis and generalization of all time-domain schemes. Numerical verification confirms the preceding assertions and reveals the advantages of the proposed method.
Praca przedstawia metodę wielowymiarowych równań falowych do rozwiązania problemów pola elektromagnetycznego niskiej częstotliwości w dziedzinie czasu. Nowa metoda gwarantuje dokładne wyniki nawet w przypadku gdy rozważana częstotliwość jest krańcowo niska. Wyniki symulacji numerycznych potwierdzają krzepkość proponowanej metody i skuteczne działanie.
Wydawca
Czasopismo
Rocznik
Tom
Strony
721--724
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR54124, Greece
autor
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR54124, Greece
autor
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR54124, Greece
Bibliografia
- [1] A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston, MA: Artech House, 1998.
- [2] R. Sikora, S. Gratkowski, and M. Komorowski, “Eddy-Current Based Determining of Conductivity and Permittivity,” COMPEL, vol. 19, no. 2, pp. 352-356, 2000.
- [3] M. Potter, M. Okoniewski, and M. Stuchly, “Low Frequency Finite Difference Time Domain (FDTD) for Modeling of Induced Fields in Humans Close to Line Sources,” J. Comp. Phys., vol. 162, pp. 82-103, 2000.
- [4] W. Ko and R. Mittra, “Extremely Low Frequency Modeling in Lossy Media Using FDTD with Application in Seafloor Characterization,” Electromagn., vol. 15, pp. 587-602, 1995.
- [5] J. Hu, C. Chan, and T. Sarkar, “Optimal Simultaneous Interpolation/Extrapolation Algorithm of Electromagnetic Responses in Time and Frequency Domains,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1725-32, 2001.
- [6] M. Farina and J. Sykulski, “Comparative Study of Evolution Strategies Combined with Approximation Techniques for Practical Electromagnetic Optimization Problems,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3216-20, 2001.
- [7] A. Ziarani and A. Konrad, “Galerkin’s Method and the Variational Procedure,” IEEE Trans. Magn., vol. 38, no. 1, pp. 190-199, 2002.
- [8] E. Tonti, “Finite Formulation of Electromagnetic Field,” IEEE Trans. Magn., vol. 38, no. 2, pp. 333-336, 2002.
- [9] J. Maciejowski, Multivariable Feedback Design. New York, NY: Addison Wesley, 1989.
- [10] R. D’Andrea and G. Dullerud, “Distributed Control of Spatially Interconnected Systems,” IEEE Trans. Automat. Control, 2003 (to appear).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0006-0008