Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The contribution deals with a brief survey on selected parts of the theory and applications of multipole analysis in Electromagnetics. The theory will be explained exemplarily on the basis of the spherical-multipole analysis, including some remarks on the bilinear form of the dyadic Green's function and the addition theorems of the vector multipole functions. In addition to some well-known examples of multipole techniques in analytical as well as in computational Electromagnetics (canonical problems, near-field antenna measurements, fast multipole method), which are briefly revisited, the paper focuses on two more recent applications: A spherical-multipole based near-to-far-field transform for the Finite-Difference Time-Domain (FDTD) method, and an efficient hybrid multipole- and Method-of-Moments approach to efficiently solve for the field in a partly filled G-TEM cell model.
Wydawca
Czasopismo
Rocznik
Tom
Strony
651--657
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- University of Kiel, Kaiserstraße 2, D-24143 Kiel, Germany
Bibliografia
- [1] J.A. Stratton, “Electromagnetic Theory", McGraw-Hill, 1941
- [2] S. Blume and L. Klinkenbusch, “Spherical-Multipole Analysis in Electromagnetics", in: “Frontiers in Electromagnetics" (eds. D. Werner and R. Mittra), Wiley & IEEE Press, New York, 1999
- [3] J.H. Bruning and Y.T. Lo, “Multiple Scattering of EM Waves by Spheres Part I: Multipole Expansion ans Ray-Optical Solutions", IEEE Trans. Antennas and Propagat., Vol 19, pp 378–390, 1971
- [4] R.C. Wittmann, “Spherical wave operators and the translation formulas", IEEE Trans. Antennas and Propagat., 36, 1078– 1087, 1988
- [5] J.J. Bowman, T.B.A. Senior, and P.L.E. Uslenghi, “Electromagnetic and acoustic scattering by simple shapes", Amsterdam, North Holland Pub. Co., 1969
- [6] G. Mie, “Beiträge zur Optik trb;&&er Medien, speziell kolloidaler Metallösungen", Ann. Physik (4. Folge), 25, 379–445, 1908
- [7] J.E. Hansen (ed.), “Spherical Near-Field Antenna Measurements", London, Peter Peregrinus Ltd., 1988
- [8] Y. Rahmat-Samii, L.I. Williams, and R.G. Yaccarino, “The UCLA Bi-polar Planar-Near-Field Antenna-Measurement and Diagnostics Range", IEEE Antennas and Propagat. Magazine, 37, 16–35, 1995
- [9] W.M. Leach, Jr. and D.T. Paris, “Probe Compensated NearField Measurements on a Cylinder", IEEE Trans. Antennas and Propagat., 21, 435–445, 1973
- [10] V. Rokhlin.: “Rapid solution of integral equations of scattering theory in two dimensions", J. Comput. Physics, 86, 414–439, 1990
- [11] W.C. Chew, J.-M. Jin, E. Michielssen, and J. Song, “Fast and Efficient Algorithms in Computational Electromagnetics", Artech House, Boston, 2001
- [12] A. Taflove, “Computational Electrodynamics - The FiniteDifference Time-Domain Method", Artech House, Boston, 1995
- [13] L. Klinkenbusch, “A Spherical Multipole Interface for Numerical Methods in Electromagnetic Field Theory", Proceedings of the Latsis Symposium on Computational Electromagnetics, Zürich, 242–247, 1995
- [14] R. Luebbers, K. Kunz, M. Schneider, and F. Hunsberger, “A Finite-Difference Time-Domain Near Zone to Far Zone Transformation", IEEE Trans. Antennas and Propagat., Vol 39, pp 429–433, 1991
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0005-0137