PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza i właściwości fizykochemiczne kulistych struktur węglowo-srebrowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synthesis and physicochemical properties of carbon-silver core-shell structures
Języki publikacji
PL
Abstrakty
PL
Kuliste cząstki węglowe wykorzystywano jako rdzenie w procesie osadzania nanocząstek srebra prowadzącym do otrzymywania struktur węglowo-srebrowych typu core-shell. Kule węglowe o średnicy ok. 450÷550 nm otrzymano zmodyfikowaną metodą Stöbera z wykorzystaniem żywicy fenolowej, którą w końcowym etapie syntezy poddano procesowi karbonizacji w temperaturze 600°C w ciągu 4 h w obojętnej atmosferze. Aby umożliwić zajście procesu osadzania srebra powierzchnie kul węglowych poddano najpierw utlenianiu za pomocą kwasu azotowego, a następnie przyłączaniu grup aminopropylowych z zastosowaniem 3-aminopropylotrimetoksysilanu. Proces osadzania srebra na modyfikowanych kulach węglowych prowadzono dwuetapowo - w pierwszym etapie kationy srebra redukowano w obecności wody amoniakalnej za pomocą kationów Sn2+ zaadsorbowanych na powierzchni kul węglowych, natomiast w drugim srebro osadzano w wyniku redukcji kationów srebra za pomocą formaldehydu. Proces ten doprowadził do gęstego pokrycia powierzchni kul węglowych nanocząstkami srebra o niezbyt regularnych wymiarach (od ok. 50 nm do ok. 100 nm). Na podstawie zdjęć skaningowej mikroskopii elektronowej wykazano, że stopień pokrycia powierzchni kul węglowych srebrem zależał od stosunku masy użytego węgla do masy azotanu srebra. Wykazano, że struktury węglowo-srebrowe charakteryzowały się znaczną absorpcją promieniowania UV-Vis (320÷800 nm).
EN
Carbon spheres were used as cores for the deposition of silver nanoparticles leading to the formation of carbon-silver core-shell structures. These spheres, with diameters ranging from 450 to 550 nm, were prepared by the modified Stöber method from phenolic resins, which at the final stage of the process were carbonized at 600 °C in an inert atmosphere for 4 hours. In order to facilitate the deposition of silver nanoparticles, the carbon spheres were made subject to oxidation with nitric acid, followed by modification with 3-aminopropyltrimethoxysilane, to attach aminopropyl groups. The deposition of silver nanoparticles onto the modified carbon spheres was a two-stage process. At the first stage silver cations were reduced by Sn2+ cations adsorbed on the modified carbon spheres, in the presence of ammonia water. At the second stage silver nanoparticles were deposited by reducing silver cations with formaldehyde. This deposition led to full coverage of the carbon spheres by non-uniform silver nanoparticles (50-100 nm). Scanning electron microscopy has revealed that the extent of coverage depends on the ratio of the mass of silver nitrate to the mass of carbon used. The resulting carbon-silver core-shell structures show a significant absorption of UV-Vis radiation (320 to 80 nm).
Czasopismo
Rocznik
Strony
3--8
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. Kaliskiego 2, 00-908 Warszawa, jchoma@wat.edu.pl
Bibliografia
  • 1. X. SUN, Y. LI: Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie International Edition 2004, Vol. 43, pp. 597–601.
  • 2. S.B. JANKIEWICZ, D. JAMIOŁA, J. CHOMA, M. JARONIEC: Silica-metal core-shell nanostructures. Advances in Colloid and Interface Science 2012, Vol. 170, pp. 28–47.
  • 3. P. JIANG, J.F. BERTONE, V.L. COLVIN: A lost-wax approach to monodisperse colloids and their crystals. Science 2001, Vol. 291, pp. 453–457.
  • 4. J. LIU, S.Z. QIAO, H. LIU, J. CHEN, A. ORPE, D. ZHAO, Q.G. LIU: Extention of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Angewandte Chemie International Edition 2011, Vol. 50, pp. 5947–5951.
  • 5. J. CHOMA, D. JAMIOŁA, K. AUGUSTYNEK, M. MARSZEWSKI, M. GAO, M. JARONIEC: New opportunities in Stöber synthesis: Preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry 2012, Vol. 22, pp. 12636–12642.
  • 6. W. STŐBER, A. FINK, E.J. BOHN: Controlled growth of monodisperse silica in the micron size range. Journal of Colloid and Interface Science 1968, Vol. 26, pp. 62–69.
  • 7. A. NIETO-MARQUEZ, R. ROMERO, A. ROMERO, J.L. VELVERDE: Carbon nanospheres: Synthesis, physicochemical properties and applications. Journal of Materials Chemistry 2011, Vol. 21, pp. 1664–1672.
  • 8. M.M. TITRICI, M. ANTONIETTI: Chemistry and materials options and sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews 2010, Vol. 39, pp. 103–116.
  • 9. A.A. DESHMUKH, S.D. MHLANGA, N.J. COVILLE: Carbon spheres. Materials Science & Engineering R 2010, Vol. 70, pp. 1–28.
  • 10. S. WANG, W.C. LI, G.P. HAO, Y. HAO, Q. SUN, X.Q. ZHANG, A.H. LU: Temperature-programmed precise control over the size of carbon nanospheres based on benzoxizine chemistry. Journal of the American Chemical Society 2011, Vol. 133, pp. 15304–15307.
  • 11. J. CHOMA, D. JAMIOŁA, K. AUGUSTYNEK, M. MARSZEWSKI, M. JARONIEC: Carbon-gold core-shell structures: Formation of shells consisting of gold nanoparticles. Chemical Communications 2012, Vol. 48, pp. 3972–3974.
  • 12. J.L. ELECHIGUERRA, J.L. BURT, J.R. MORONES, A. CAMACHO-BRAGADO, X. GAO, H.H. LARA, M.J. YACAMAN: Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology 2005, Vol. 3, No. 6, pp. 1–6.
  • 13. S.A. KALELE, S.S. ASHTAPURE, N.Y. HEBALKAR, S.W. GOSAVI, D.N. DEOBAGKAR, D.D. DEOBAGKAR, S.K. KULKARNI: Optical detection of antibody using silica-silver core-shell particles. Chemical Physics Letters 2005, Vol. 404, pp. 136–141.
  • 14. S. NIE, S.R. EMORY: Probing single molecule and single nanoparticles by surface-enhanced Raman scattering. Science 1997, Vol. 275, pp. 1102–1106.
  • 15. R.D. AVERITT, S.L. WESTCOTT, N.J. HALAS: Linear optical properties of gold nanoshells. Journal of the Optical Society of America B 1999, Vol. 16, pp. 1824–1832.
  • 16. Y. LU, Y. YIN, Z.Y. LI, Y. XIA: Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Letters 2002, Vol. 2, pp. 785–788.
  • 17. S. PHADTARE, A. KUMAR, V.P. VINOD, C. DASH, D.V. PALASKAR, M. RAO, P.G. SHUKLA, S. SIVARAM, M. SASTRY: Direct assembly of gold nanoparticle “shells” on polyurethane microsphere “cores” and their application as enzyme immobilization templates. Chemistry of Materials 2003, Vol. 15, pp. 1944–1949.
  • 18. J. CHOMA: Zastosowanie nanoporowatych materiałów do oczyszczania wody. Ochrona Środowiska 2011, vol. 33, nr 4, ss. 15–22.
  • 19. G.-S. CHEN, C.-N. CHEN, T.-T. TSENG, M.-H. HEI, J.H. HSIEH, W.J. TSENG: Synthesis, characterization, and antibacterial activity of silver-doped silica nanocomposite particles. Journal of Nanoscience and Nanotechnology 2011, Vol. 11, pp. 90–97.
  • 20. M.M. DA SILVA PAULA, C.V. FRANCO, M.C. BALDIN, L. RODRIGUES, T. BARICHELLO, G.D. SAVI, L.F. BELLOTO, M.A. FIORI, L. DA SILVA: Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Materials Science and Engineering C 2009, Vol. 29, pp. 647–650.
  • 21. X. ZHANG, H. NIU, J. YAN, Y. CAI: Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, Vol. 375, pp. 186–192.
  • 22. K. NISCHALA, T.N. RAO, N. HEBALKAR: Silica-silver core-shell particles for antibacterial textile application. Colloids and Surface B: Biointerfaces 2011, Vol. 82, pp. 203–208.
  • 23. J. CHOMA, D. JAMIOŁA, J. LUDWINOWICZ, M. JARONIEC: Deposition of silver nanoparticles on silica spheres and rods. Colloids and Surface A: Physicochemical and Engineering Aspects 2012, Vol. 411, pp. 74–79.
  • 24. M. SCHIERHORN, L.M. LIZ-MARZAN: Synthesis of bimetallic colloid with tailored intermetallic separations. Nano Letters 2002, Vol. 2, pp. 13–16.
  • 25. Y.T. LIM, O.O. PARK, H.T. YUNG: Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: Near infrared responsive materials. Journal of Colloid and Interface Science 2003, Vol. 263, pp. 449–453.
  • 26. J. CHOMA, A. DZIURA, D. JAMIOŁA, P. NYGA, M. JARONIEC: Synteza nanocząstek złota na powierzchni koloidów krzemionkowych. Ochrona Środowiska 2010, vol. 32, nr 3, ss. 3–6.
  • 27. Y.T. LIM, O.O. PARK, H.T. JUNG: Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: Near infrared responsive materials. Journal of Colloid and Interface Science 2003, Vol. 263, pp. 449–453.
  • 28. S.J. OLDENBURG, S.L. WESTCOTT, R.D. AVERITT, N.J. HALAS: Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. The Journal of Chemical Physics 1999, Vol. 111, pp. 4729–4735.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0051-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.