Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Nowa struktura i algorytm uczenia w kwantowej sieci neuronowej
Języki publikacji
Abstrakty
In the structure of original Quantum Neural Network (QNN), only multi-sigmoid transfer function is adopted. Besides that, due to the conflict of the two objective functions in original training algorithm, the training process converges slowly and presents constant variation. In this paper, the QNN with multi-tan-sigmoid transfer function and a novel training algorithm which combines the two objective functions are proposed. Experimental results demonstrate the effectiveness of the structure improvement and the new training algorithm.
W oryginalnym algorytmie kwantowej sieci neuronowej QNN tylko multisigmoidalna funkcja przejścia jest wykorzystywana. W pracy zaprezentowano sieć z multi-tan-sigmoidalną funkcją przejścia z nowym algorytmem uczenia.
Wydawca
Czasopismo
Rocznik
Tom
Strony
315--320
Opis fizyczny
Bibliogr. 7 poz., rys., wykr.
Bibliografia
- [1] Graupe D., Principles of Artificial Neural Networks. 2nd. River Edge, NJ, USA: World Scientific Publishing Co., Inc., (2007).
- [2] Purushothaman G., Karayiannis N. B., Quantum neural networks (QNNs): inherently fuzzy feedforward neural networks, Neural Networks, IEEE Transactions on, 8(1997), No. 3, 679- 693.
- [3] He Z., Zhang H., Zhao J., et al., Classification of power quality disturbances using quantum neural network and DS evidence fusion, European Transactions on Electrical Power, (2011).
- [4] Shen C., Huang H., Hwang R., Ammonia identification using shear horizontal surface acoustic wave sensor and quantum neural network model, Sensors and Actuators A: Physical, 147(2008), No. 2, 464-469.
- [5] Huang C., Huang H., Chen Y., et al., An AI system for the decision to control parameters of TP film printing, Expert Systems with Applications, 36(2009), No. 5, 9580-9583.
- [6] Zue V., Seneff S., Glass J., Speech database development at MIT: Timit and beyond, Speech Communication, 9(1990), No. 4, 351-356.
- [7] Yuhuan Z., Xiongwei Z., Jinming W., et al., Research on speaker feature dimension reduction based on CCA and PCA, Wireless Communications and Signal Processing (WCSP), 2010 International Conference on, China.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0050-0075