PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on Thermal Conduction Mechanism on Electrode Surface in Field-distortion Gas Switch Discharging

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badania mechanizmu przewodzenia ciepła na powierzchni elektrody wyłącznika gazowego
Języki publikacji
EN
Abstrakty
EN
Pulsed power technology is one of the technological foundations in high and new technology research, which has extremely broad development and application prospect. Gas switch is one of the key elements in pulsed-power devices, and electrode erosion is a key restrictive factor in high-power gas switch development and application. According to one dimensional equation of heat conduction and thermal equilibrium equation near the electrode surface, this paper researches electrode heat conduction mechanism, calculates electrode erosion heat fluxes and their peak powers caused under different discharge conditions. Calculation results indicate that arc joule heat is the main reason of electrode erosion when discharge current is not too high.
PL
Zbadano erozję elektrody w wyłącznikach gazowych przy wyładowaniach impulsowych. Przeprowadzono obliczenia przewodnictwa cieplnego oraz rozkład temperatury wokół elektrody. Stwierdzono że główną przyczyną erozji jest ciepło wyładowania łukowego.
Rocznik
Strony
253--257
Opis fizyczny
Bibliogr. 32 poz., rys. wykr.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1] Qiu AC. The Development of Technology for Pulsed X ray Simulators[J]. Engineering Science, 2000, 2 (09): 24-28.
  • [2] Mesyats GA. Pulsed Power[M]. New York: Kluwer Academic, 2004.
  • [3] Neau EL. Environmental and Industrial Applications of Pulsed- Power Systems[J]. IEEE Transactions on Plasma Science, 1994, 22 (1): 2-10.
  • [4] Musschoot J, Depla D, Buyle G, et al. Influence of the geometrical configuration on the plasma ionization distribution and erosion profile of a rotating cylindrical magnetron: a Monte Carlo simulation[J]. Journal of Physics D-Applied Physics, 2006, 39 (18): 3989-3993.
  • [5] Chau SW, Hsu KL, Lin DL, et al. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air[J]. Journal of Physics D-Applied Physics, 2007, 40 (7): 1944-1952.
  • [6] Peters J, Yin F, Borges CFM, et al. Erosion mechanisms of hafnium cathodes at high current[J]. Journal of Physics DApplied Physics, 2005, 38 (11): 1781-1794.
  • [7] Donaldson AL, Hagler MO, Kristiansen M, et al. Electrode Erosion Phenomena in a High-Energy Pulsed Discharge[J]. IEEE Transactions on Plasma Science, 1984, 12 (1): 28-38.
  • [8] Donaldson AL, Kristiansen M, Watson A, et al. Electrode Erosion in High-Current, High-Energy Transient Arcs[J]. IEEE Transactions on Magnetics, 1986, 22 (6): 1441-1447.
  • [9] Liau VK, Lee BY, D Song K, et al. The influence of contacts erosion on the SF6 arc[J]. Journal of Physics D-Applied Physics, 2006, 39 (10): 2114-2123.
  • [10] Watson A, Donaldson AL, Ikuta K, et al. Mechanism of Electrode Surface Damage and Material Removal in High- Current Discharges[J]. IEEE Transactions on Magnetics, 1986, 22 (6): 1799-1803.
  • [11] Mcclure GW. Plasma Expansion as a Cause of Metal Displacement in Vacuum-Arc Cathode Spots[J]. Journal of Applied Physics, 1974, 45 (5): 2078-2084.
  • [12] Donaldson AL. Electrode erosion in high-current, high-energy transient arcs[D]. Lubbock: Texas Tech University, 1991.
  • [13] Butkevich GV, G. S. Belkin, Vedeshenkov NA. Electrical erosion on heat flux and duration of current flow[J]. Sov phys Tech Phys, 1971, 15 (7): 1167-1170.
  • [14] Zhang JL, Yan JD, Fang MTC. Electrode evaporation and its effects on thermal arc behavior[J]. IEEE Transactions on Plasma Science, 2004, 32 (3): 1352-1361.
  • [15] Donaldson AL, Kristiansen M. Utilization of a thermal model to predict electrode erosion parameters of engineering importance[C]. San Diego: IEEE Conference Record of the 1990 Nineteenth Power Modulator Symposium, 1990: 265-269.
  • [16] Belkin GS. Procedure for Calculating Rosion of Heavy-Current Contacts by Arcing[J]. Electrical Technology, 1972, 5: 151-155.
  • [17] Yu CM. Heat conduction and its numerical analysis[M]. Beijing: Tsinghua University Press, 1981.
  • [18] Guo DR. Heat conduction equation and its solution[M]. Beijing: China Higher Education Press, 1991.
  • [19] Lou M, Jiang CS, Chang AB. Study on mechanism of electrode erosion of high-power gas spark gap switch[J]. High Power Laser & Particle Beams, 2004, 16 (6): 781-786.
  • [20] Croft DR. Finite difference methed for heat transfer calculation[M]. Beijing: Metallurgical Industry Press, 1982.
  • [21] Gao BQ. Finite difference time-domain method[M]. Beijing: National Defence Industrial Press, 1995.
  • [22] Cramer KR, Roman WC. Electrode Design Based on Transient Thermal Analysis[J]. Mechanical Engineering, 1970, 92 (5): 75- 79.
  • [23] Gordon LB, Kristiansen M, Hagler MO, et al. Material Studies in a High-Energy Spark Gap[J]. IEEE Transactions on Plasma Science, 1982, 10 (4): 286-293.
  • [24] Behrisch R. Surface Erosion from Plasma Materials Interaction[J]. Journal of Nuclear Materials, 1979, 85-6 (Dec): 1047-1061.
  • [25] Szente RN, Munz RJ, Drouet MG. Effect of the Arc Velocity on the Cathode Erosion Rate in Argon Nitrogen Mixtures[J]. Journal of Physics D-Applied Physics, 1987, 20 (6): 754-756.
  • [26] Pamela J, Ongena J, Contributors JE. Overview of JET results[J]. Nuclear Fusion, 2005, 45 (10): S63-S85.
  • [27] Donaldson AL, Kristiansen M. Electrode Erosion as a Function of Electrode Materials in High Current, High Energy Transient Arcs. Pulsed Power Conference: Monterey, California, 1989: 83- 86.
  • [28] Gleizes A, Bouaziz M, Gonzalez JJ, et al. Influence of the anode material on an argon arc[J]. Ieee Transactions on Plasma Science, 1997, 25 (5): 891-896.
  • [29] Zingerman AS, Kaplan DA. Electric Erosion of an Anode as a Function of Interelectrode Distance[J]. Soviet Physics-Technical Physics, 1958, 3 (2): 361-367.
  • [30] Coulombe S, Meunier JL. A comparison of electron-emission equations used in arc-cathode interaction calculations[J]. Journal of Physics D-Applied Physics, 1997, 30 (20): 2905-2910.
  • [31] Zhou X, Heberlein J, Pfender E. Theoretical-Study of Factors Influencing Arc Erosion of Cathode[J]. Ieee Transactions on Components Packaging and Manufacturing Technology Part A, 1994, 17 (1): 107-112.
  • [32] Yokomizu Y, Matsumura T, Henmi R, et al. Total voltage drops in electrode fall regions of SF6, argon and air arcs in current range from 10 to 20000 A[J]. Journal of Physics D-Applied Physics, 1996, 29 (5): 1260-1267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0050-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.