PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Online Blind Separation of Dependent Sources Using Nonnegative Matrix Factorization Based on KL Divergence

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
On-line ślepa separacja zależnych źródeł przy użyciu faktoryzacji nieujemnej matrycy bazująca na kryterium Kullback-Leibler
Języki publikacji
EN
Abstrakty
EN
This paper proposes a novel online algorithm for nonnegative matrix factorization (NMF) based on the generalized Kullback-Leibler (KL) divergence criterion, aimed to overcome the high computation problem of large-scale data brought about by conventional batch NMF algorithms. It features stable updating the factors alternately for each new-coming observation, and provides an efficient solution for the blind separation of statistically dependent sources (i.e., the sources are mutually correlated). Our theoretic analysis is validated by simulation examples.
PL
Przedstawiono nowy algorytm do faktoryzacji nieujemnej macierzy bazujący na kryterium Kullback-Leibler, pozwalający usprawnić problem obliczeń dużej ilości danych. Algorytm sukcesywnie zmienia współczynniki i pozwala na ślepą separację statystycznie zależnych źródeł.
Rocznik
Strony
278--281
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
autor
autor
  • Wireless Communication Faculty, Institute of Communications Engineering, eehoo86@163.com
Bibliografia
  • [1] T. Routtenberg and J. Tabrikian, Blind MIMO-AR system identification and source separation with finite-alphabet, IEEE Trans. Signal Process., vol.58, no.3, pp.990-1000, 2010.
  • [2] V. V. Nikulin, G. Nolte and G. Curio, A novel method for reliable and fast extraction of neuronal EGG/MEG oscillations on the basis of spatio-spectral decomposition, NeuroImage, vol. 55, pp.1528-1535, 2011.
  • [3] F. Nesta, T. S. Wada and B.-H. Juang, Batch-online semi-blind source separation applied to multi-channel acoustic echo cancellation, IEEE Trans. Audio, Speech and Lang. Process., vol. 19, no.3, pp. 583-599, 2011.
  • [4] A. Plaza, et al, Recent advances in techniques for hyperspectral image processing, Remote Sens. Envion., vol.113, pp.S110-S122, 2009.
  • [5] J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol.44, no.9, pp.2601-2616, 2006.
  • [6] C. F. Caiafa and A. N. Proto, Separation of statistically dependent sources using an L2-distance non-Gaussianity measure, Signal Process., vol.86, pp.3404-3420, 2006.
  • [7] I. Kopriva and D. Sersic, Wavelet packets approach to blind separation of statistically dependent sources, Neurocomputing, vol.71, pp.1642-1655, 2008.
  • [8] Y. Xiang, S. K. Ng and V. K. Nguyen, Blind separation of mutually correlated sources using precoders, IEEE Trans. Neural Networks, vol.21, no.1, pp.82-90, 2010.
  • [9] D. D. Lee, H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol.401, pp.788-791, 1999.
  • [10] D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, in: Advances in Neural Information Processing Systems, vol.13, pp.556-562, 2001.
  • [11] F. Y. Wang, C. Y. Chi, T. H. Chan and Y. Wang, Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization, IEEE Trans. Pattern Anal. Mach. Intell., vol.32, pp.875-888, 2010.
  • [12] A. Cichocki, R. Zdunek and S. Amari, New algorithm for nonnegative matrix factorization in applications to blind source separation, in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., vol.5, pp.621-624,2006.
  • [13] H. Kim and H. P. Denning, Sparse nonnegative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis, Bioinformatics, vol.23, no.12, pp.1495-1502, 2007.
  • [14] R. C. Henry, Multivariate receptor models-current practice and future trends, Chemometrics and Intelligent Laboratory Systems, 60(1-2), pp.43-48, 2002.
  • [15] S. Abdallah, M. Plumbley, Polyphonic transcription by nonnegative sparse coding of power spectra, in: Proc. of Int. Conf. Music Information Retrieval, pp.318-325, 2004.
  • [16] S. S. Bucak and B. Gunsel, Incremental subspace learning via non-negative matrix factorization, Pattern Reconit., vol.42, no.5, pp.788-797,2009.
  • [17] G.-X. Zhou, Z.-Y. Yang, S. Xie and J.-M. Yang, Online blind source separation using incremental nonnegative matrix factorization with volume constraint, IEEE Trans. Neural Netw., vol.22, no.4, pp.550-560, 2011.
  • [18] T. Virtanen, Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria, IEEE Trans. Audio, Speech and Lang. Process., vol.15, no.3, pp.1066-1074, 2007.
  • [19] J.-F. Cardoso and B.-H. Laheld, Equivariant adaptive source separation, IEEE Trans. Signal Process., vol.44, no.12, pp.3017-3030, 1996.
  • [20] F. Yin, T.Mei and J. Wang, Blind-source separation based on decorrelation and nonstationarity, IEEE Trans. Circuits Syst. I, vol.54, no.5, pp.1150-1158, 2007.
  • [21] A. Cichocki and S. Amari, Adaptive blind signal and image processing: learning algorithms and applications. New York: Wiley, 2003.
  • [22] A. Cichocki and R. Zdunek, The NMFLAB package: for signal processing, version 1.1, RIKEN Brain Science Institute, Wako shi, Saitnama, Japan, 2006.
  • [23] A. Cichocki, S. Amari, K. Siwek, T. Tanaka, and A.H. Phan, The ICALAB package: for image processing, version 1.2, RIKEN Brain Science Institute, Wako shi, Saitama, Japan, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0049-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.