PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Survey on Flexible AC Transmission Systems (FACTS)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza urządzeń systemu FACTS
Języki publikacji
EN
Abstrakty
EN
The flexible alternating current transmission system (FACTS), a new technology based on power electronics, proposes an opportunity to improve controllability, stability, and power transfer capability of AC transmission systems. This article presents a comprehensive review and evaluation of FACTS controllers. This paper provides an extensive analysis on the research and improvements in the power system stability development using FACTS controllers. Several technical publications related to FACTS installations have been highlighted and performance comparison of different FACTS controllers has been discussed. Moreover, some of the utility experience, real-world installations, and semiconductor technology development have been outlined.
PL
FACTS (elastyczny system transmisji prądu przemiennego) jest nową technologią bazującą na urządzeniach energoelektronicznych umożliwiającą poprawę sterowalności, stabilności i możliwości przesyłu energii. Artykuł prezentuje przegląd i ocenę kontrolerów stosowanych w tym systemie. Szczególny nacisk położono na porównanie parametrów.
Słowa kluczowe
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 226 poz., tab., wykr.
Twórcy
autor
autor
autor
  • Department of Electrical, Electronic and Systems Engineering, National University of Malaysia, 43600 Bangi, Selangor, Malaysia, mahdiyeh_eslami@yahoo.com
Bibliografia
  • [1] Kundur P., Klein M., Rogers G., Zywno M., Application of power system stabilizers for enhancement of overall system stability. IEEE Trans. Power Syst., 4 (2002) No. 2, 614-626.
  • [2] Eslami M., Shareef H., Mohamed A., Tuning of power system stabilizers using particle swarm optimization with passive congregation. Inter. J. Phys. Sci.,17(2010) No. 5, 2658–2663
  • [3] Eslami M., Shareef H., Mohamed A., power system stabilizer design using hybrid multi-objective particle swarm optimization with chaotic. J. Cent. South Univ. Technol.,18(2011) No. 5, 1579-1588
  • [4] Eslami M., Shareef H., Mohamed A., Khajehzadeh m., Damping of Power System Oscillations Using Genetic Algorithm and Particle Swarm Optimization. Inter. Rev. Electr. Eng., 6(2010) No.5, 2745-2753.
  • [5] Eslami M., Shareef H., Mohamed A., Application of Artificial Intelligent Techniques in PSS design: A survey of the state-ofthe- art methods. Przegląd Elektrotechniczny (Electr. Rev.) 87(2011) No. 4. 188-197.
  • [6] Eslami M., Shareef H., Mohamed A., Application of PSS and FACTS devices for intensification of power stability. Inter. Rev. Electr. Eng., 5 (2010) No. 2, 552-570.
  • [7] Hingorani N., High Power Electronics and flexible AC Transmission System, IEEE Power Eng. Rev., 8 (1988) No. 7, 3-4
  • [8] Hingorani N.G., FACTS-flexible AC transmission system. Conference on AC and DC Power Transmission, 1991, 1 -7
  • [9] Hingorani N.G., FACTS technology and opportunities, lEE Colloquium on Flexible AC Transmission Systems- The Key to Increased Utilisation of Power Systems, 1994,401-410
  • [10] Hingorani N.G., Future role of power electronics in power systems, International Symposium on Power Semiconductor Devices and ICs, 1995 13 -15
  • [11] Edris A.,“Proposed Terms and Definitions for Flexible AC Transmission System, IEEE Trans. Power Deliv., 12 (1997), No.4, 1848–1852.
  • [12] Noroozian M., Andersson G., Power Flow Control by Use of Controllable Series Components, IEEE Trans PWRD, 8 (1993) No. 3, 1420–1429.
  • [13] Wang H. F., Swift F. J., A Unified Model for the Analysis of FACTS Devices in Damping Power System Oscillations. Part I: Single-Machine Infinite-Bus Power Systems, IEEE Trans. PWRS, 12(1997) no. 2, 941–946.
  • [14] Ise T., Hayashi T., Ishii L., Kumagai S., Power system stabilizing control using high speed phase shifter, Proceedings of the Power Conversion, 1997, 735-740
  • [15] P.L. So, D.C. MacDonald, Stabilization of inter-area modes by controllable phase shifter, IEEE AFRICON, 1996, 419 -424
  • [16] M.A. Abido, Thyristor controlled phase shifter based stabilizer design using simulated annealing algorithm, Electric Power Engineering, International Conference on Power Tech, Budapest,1999, 307
  • [17] L.T. Yoke and W. Youyi , Transient stability improvement of power systems using nonlinear excitation, phase shifter and adaptive control law, International Conference on Energy Management and Power Delivery, 1995, 468-473
  • [18] A.A. Hashmani, W. Youyi and T. Lie, Design and application of a nonlinear coordinated excitation and TCPS controller in power systems, American Control Conference, 2001, 811-816
  • [19] F. Jiang, S.S. Choi, G. shrestha, Power system stability enhancement using static phase shifter, IEEE Trans. Power Sys. 12(1997), 207 -214
  • [20] Y. Wang, A. A. Hashmani, and T. T. Lie, "Nonlinear coordinated excitation and TCPS controller for multimachine power system transient stability enhancement," IEE Proceedings: Generation, Transmission and Distribution, vol. 148, 133-141, 2001.
  • [21] A. Hashmani, Y. Wang, and T. T. Lie, "Enhancement of power system transient stability using a nonlinear coordinated excitation and TCPS controller," Int. J. Electr. Power Energy Syst., vol. 24, 201-214, 2002
  • [22] Hashmani, Y. Wang, and T. T. Lie, "Design and application of a nonlinear coordinated excitation and TCPS controller in power systems," Int. J. Cont., Au. Sys., vol. 3, 346-354, 2005.
  • [23] A. Ishigane, J. Zhao and T. Taniguchi, Representation and control of high speed phase shifter for an electric power system, lEE Proceedings Generation Transmission and Distribution, 145 (1998), No.3, 308- 314.
  • [24] H.W. Ngan, modelling static phase shifters in multi-machine power systems, International Conference on Advances in Power System Control, 1997, 785 -790
  • [25] Kazemi and R. Sharifi, "Optimal location of thyristor controlled phase shifter in restructured power systems by congestion management,"IEEE International Conference on Industrial Technology, Mumbai, 2006, 294-298.
  • [26] R. J. Abraham, D. Das, and A. Patra, "Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system," IET Generation, Transmission and Distribution, vol. 1, 632-639, 2007.
  • [27] S. Robak, D. D. Rasolomampionona, and M. Januszewski, "Damping of power swings using a FACTS device of the TCPS type: Modelling and laboratory experiments," Int. J. Electr. Eng. Edu., vol. 44, 263-279, 2007
  • [28] R. J. Abraham, D. Das, and A. Patra, "AGC study of a hydrothermal system with SMES and TCPS," European Transactions on Electrical Power, vol. 19, 487-498, 2009.
  • [29] G. Z. Xu, S. Y. Wu, Y. H. Wang, and Q. Guo, "Damping low frequency oscillation in power system by TCSC," Power System Technology, vol. 28, 45-47, 2004.
  • [30] L. Fan and A. Feliachi, "Robust TCSC control design for damping Inter-area oscillations," IEEE Power Engineering Society Transmission and Distribution, 2001, 784-789.
  • [31] M. Simoes, D. C. Savelli, P. C. Pellanda, N. Martins, and P. Apkarian, "Robust design of a TCSC oscillation damping controller in a weak 500-kV interconnection considering multiple power flow scenarios and external disturbances," IEEE Transactions on Power Systems, vol. 24, 226-236, 2009.
  • [32] X.R. Chen, N.C. Pahalawaththa, U.D. Annakkage and C. Kumble, Output feedback TCSC controllers to improve damping of meshed multi-machine power systems, Generation Transmission and Distribution, lEE Proceedings, Volume 144, No.3, 1997, 243-248.
  • [33] C. Jaewon and J.H. Chow, Time-optimal series capacitor control for damping inter-area modes in interconnected power systems, IEEE Trans. Power Syst.,12(1997): 215 -221
  • [34] C. Jaewon and J.H. Chow, Time-optimal control of power systems requiring multiple switchings of series capacitors, IEEE Trans. Power Syst, 13(1998), 367 -373
  • [35] Q. Zhao and J. Jiang, A TCSC damping controller design using robust control theory, Int. J. Power Energy Syst. 20(1998), 25-33.
  • [36] T.S. Luor and Y.Y. Hsu, Design of an output feedback variable structure thyristor-controlled series compensator for improving power system stability, Electr. Power Syst. Res., 47, 1998, 71-77.
  • [37] T.T. Lie, G.B. Shrestha and A. Ghosh, Design and application of a fuzzy logic control scheme for transient stability enhancement in power systems, Electric Power System Research, 33, 1995, 17-23.
  • [38] M. T. Haque, A. R. Milani, and A. Lafzi, "Coordinated design of PSS and TCSC dynamics model for power system network oscillations," International Conference on Power Electronics and Drive Systems, Bangkok, 2007, 411-416.
  • [39] X. Dai, J. Liu, Y. Tang, N. Li and H. Chen, Neural network athorder inverse control of thyristor controlled series compensator, Electr. Power Syst. Res., 45, 1998, 19-27.
  • [40] Y.Y. Hsu and T.S. Luor, Damping of power system oscillations using adaptive thyristor-controlled series compensators tuned by artificial neural networks, Generation Transmission and Distribution, lEE Proceedings, Volume 146, No.2, 1999, 137-142.
  • [41] G. Chunlin and X. Xiangning, "Transient stability control of TCSC," IEEE Conference on Industrial Electronics and Applications, Xi'an, 2009, 1399-1402.
  • [42] M.A. Abido, Genetic-based TCSC damping controller design for power system stability enhancement, International Conference on Electric Power Engineering, 1999
  • [43] G. I. Rashed, H. I. Shaheen, and S. J. Cheng, "Optimal location and parameter setting of TCSC by both genetic algorithm and particle swarm optimization,"IEEE Conference on Industrial Electronics and Applications, 2007, 1141-1147
  • [44] R. Benabid, M. Boudour, and M. A. Abido, "Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization," Electric Power Systems Research, vol. 79, 1668-1677, 2009.
  • [45] L. Khan, T. Saeed, and K. L. Lo, "Robust damping control system design for TCSC using particle swarm optimization," International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 27, 593-612, 2008.
  • [46] M.A. Abido , Pole placement technique for PSS and TTCSCbased stabilizer design using simulated annealing, Electric Power System Research, 22, 2000, 543-554.
  • [47] W. Li, Y. Jing, G. M. Dimirovski, and X. Liu, "Robust nonlinear control of TCSC for power system via adaptive back-stepping design,"IEEE Conference on Control Applications - Proceedings, Istanbul, 2003, 296-300.
  • [48] Y. Wang, Y. L. Tan, and G. Guo, "Robust nonlinear coordinated excitation and TCSC control for power systems," IEE Proceedings: Generation, Transmission and Distribution, vol. 149, 367-372, 2002.
  • [49] Z. Mao, "A new modeling and control scheme for thyristorcontrolled series capacitor," Journal of Control Theory and Applications, vol. 7, 81-86, 2009.
  • [50] M. El Kady, "Optimal Location and Control of TCSC to Maximize Load Expansion," IEEE Power Engineering Society Transmission and Distribution Conference, 2003, 428-433.
  • [51] K. Sharma, "Optimal number and location of TCSC and load ability enhancement in deregulated electricity markets using MINLP," Int. J. Emerg. Electr. Power Syst., vol. 5, 1-15, 2006.
  • [52] S. Panda, "Differential evolutionary algorithm for TCSC-based controller design," Simulation Modelling Practice and Theory, vol. 17, 1618-1634, 2009.
  • [53] A. R. Messina, O. Begovich, and M. Nayebzadeh, “Analytical Investigation of the Use of Static VAR Compensators to Aid Damping of Interarea Oscillations”, Electric Power Systems Research, 51(1999), 199–210.
  • [54] A.R. Messina, J. Arroyo, N. Evaristo, and I. Castillo T, "Damping of low-frequency interarea oscillations using HVDC modulation and SVC voltage support," Electric Power Components and Systems, vol. 31, 389-402, 2003
  • [55] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Particle Swarm Optimization for Simultaneous Tuning of Static Var Compensator and Power System Stabilizer. Przegląd Elektrotechniczny (Electr. Rev.) 87(2011) No. 9a. 343-347.
  • [56] M. Parniani and M. R. Iravani, “Optimal Robust Control Design of Static VAR Compensators”, IEE Proc. Genet.Transm. Distrib, 145(3) (1998), 301–307.
  • [57] S. Robak, Robust SVC controller design and analysis for uncertain power systems, Control Engineering Practice.2009.
  • [58] W. Gu, F. Milano, P. Jiang, and G. Tang, "Hopf bifurcations induced by SVC Controllers: A didactic example," Electr. Power Sys. Res., vol. 77, 234-240, 2007.
  • [59] G. El-Saady, M. El-Sadek, M. Abo-El-Saud, “Fuzzy Adaptive Model Reference Approach-Based Power System Static VAR Stabilizer”, Electr. Power Syst. Res., 45(1998), 1–11.
  • [60] C. Chang, Y. Qizhi, “Fuzzy Bang–Bang Control of Static VAR Compensators for Damping System-Wide Low-Frequency Oscillations”, Electr. Power Syst. Res., 49(1999), 45–54.
  • [61] A. Qun, A. Pandey, and S. K. Starrett, “Fuzzy Logic Control for SVC Compensator to Control System Damping Using Global Signal”, Electr.Power Syst. Res., 67 (2003), 115–122.
  • [62] K. L. Lo and M. O. Sadegh, “Systematic Method for the Design of a Full-scale Fuzzy PID Controller for SVC to Control Power System Stability”, IEE Proc. Genet. Transm. Distrib., 150(3)(2003), 297–304.
  • [63] J. Lu, M. H. Nehrir, and D. A. Pierre, “A Fuzzy Logic-Based Adaptive Damping Controller for Static VAR Compensator”, Electr.Power Syst. Res, 68(1)(2004), 113–118.
  • [64] Joorabian, M; Ebadi, M: “Locating Static VAR Compensator (SVC) Based on Small Signal Stability of Power System”, Int. Rev. Electr. Eng., vol. 4 n. 4, 635-641, 2009
  • [65] R. Benabid, M. Boudour, and M. A. Abido, "Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization," Electr.Power Syst. Res, vol. 79, 1668-1677, 2009.
  • [66] M. H. Haque, "Best location of SVC to improve first swing stability limit of a power system," Electr.Power Syst. Res, vol. 77, 1402-1409, 2007.
  • [67] R. MÃnguez, F. Milano and A. J. Conejo, "Optimal network placement of SVC devices," IEEE Trans. Power Syst., 22(2007), 1851-1860,.
  • [68] A. R. Messina and E. Barocio, “Nonlinear Analysis of Interarea Oscillations: Effect of SVC Voltage Support”, Electr.Power Syst. Res, 64(1) (2003), 17–26.
  • [69] Y. Ruan and J. Wang, "The coordinated control of SVC and excitation of generators in power systems with nonlinear loads," Int. J. Electr. Power Energy Syst., 27(2005), 550-555.
  • [70] Y. Wang, Y. Tan, and G. Guo, "Robust nonlinear coordinated generator excitation and SVC control for power systems," Int. J. Electr. Power Energy Syst. 22(2000), 87-195.
  • [71] S. Li, M. Ding, J. Wang, and W. Zhang, "Voltage control capability of SVC with var dispatch and slope setting," Electr.Power Syst. Res, vol. 79, 818-825, 2009.
  • [72] D. J. Hanson, M. L. Woodhouse, C. Horwill, D. R. Monkhouse, and M. M. Osborne, “STATCOM: A New Era of Reactive Compensation”, Power Eng. J., 2002, 51–160.
  • [73] H. Wang, H. Li, and H. Chen, “Application of Cell Immune Response Modelling to Power System Voltage Control by STATCOM”, IEE Proc.-Gener. Transmi. Distib., 149(2002), 102–107.
  • [74] M. A. Abido, “Analysis and Assessment of STATCOM-Based Damping Stabilizers for Power System Stability Enhancement”, Electr. Power Syst. Res., 73 (2005), 177–185.
  • [75] M. H. Haque, “Use of Energy Function to Evaluate the Additional damping Provided by a STATCOM”, Electr.Power Syst. Res, 72(2)(2004), 195–202.
  • [76] H. F. Wang, “Phillips-Heffron Model of Power Systems Installed with STATCOM and Applications”, IEE Proc.- Gener. Transmi. Distib., 146(5)(1999), 521–527.
  • [77] K. R. Padiyar and V. S. Parkash, “Tuning and Performance Evaluation of Damping Controller for a STATCOM”, Int. J. of Electrical Power and Energy Systems, 25(2003), 155–166.
  • [78] L. Cong and Y. Wang, “Coordinated Control of Generator Excitation and STATCOM for Rotor Angle Stability and Voltage Regulation Enhancement of Power Systems”, IEE Proc.-Gener. Transmi. Distib., 149(6)(2002), 659–666.
  • [79] A. H. M. A. Rahim, S. A. Al-Baiyat, and H. M. Al-Maghrabi, “Robust Damping Controller Design for a Static Compensator”, IEE Proc.-Gener. Transmi. Distib., 149(4)(2002), 491–496.
  • [80] Y. S. Lee and S. Y. Sun, “STATCOM Controller Design for Power System Stabilization with Sub-optimal Control and Strip Pole Assignment”, Int. J. of Electr. Power Energy Syst., 24(2002), 771–779.
  • [81] N. C. Sahoo, B. K. Panigrahi, P. K. Dash, and G. Panda, “Multivariable Nonlinear Control of STATCOM for Synchronous Generator Stabilization”, Int. J. of Electr. Power Energy Syst., 26(1)(2004), 37–48.
  • [82] N. C. Sahoo, B. K. Panigrahi, P. K. Dash, and G. Panda, “Application of a Multivariable Feedback Linearization Scheme for STATCOM Control”, Electr.Power Syst. Res, 62(1)(2002), pp. 81–91.
  • [83] S. A. Al-Baiyat, “Power System Transient Stability Enhancement by STATCOM with Nonlinear H∞ Stabilizer”, Electr.Power Syst. Res, 73(1)(2005), pp. 45–52.
  • [84] S. Morris, P. K. Dash, and K. P. Basu, “A Fuzzy Variable Structure Controller for STATCOM”, Electr.Power Syst. Res, 65(1)(2003), 23–34.
  • [85] Q. Song and W. Liu, "Control of a cascade STATCOM with star configuration under unbalanced conditions," IEEE Transactions on Power Electronics, vol. 24, pp. 45-58, 2009.
  • [86] N. M. Shah, V. K. Sood, and V. Ramachandran, "Modeling, control and simulation of a chain link STATCOM in EMTPRV," Electr.Power Syst. Res., vol. 79, 474-483, 2009.
  • [87] W. Qiao, G. K. Venayagamoorthy, and R. G. Harley, "Realtime implementation of a STATCOM on a wind farm equipped with doubly fed induction generators," IEEE Trans. Indus. Appl., vol. 45, pp. 98-107, 2009.
  • [88] A.Luo, C. Tang, Z. Shuai, J. Tang, X. Y. Xu, and D. Chen, "Fuzzy-PI-based direct-output-voltage control strategy for the STATCOM used in utility distribution systems," IEEE Trans. Indus. Electr., vol. 56, pp. 2401-2411, 2009.
  • [89] Y. Liu, A. Q. Huang, W. Song, S. Bhattacharya, and G. Tan, "Small-signal model-based control strategy for balancing individual DC capacitor voltages in cascade multilevel inverterbased STATCOM," IEEE Trans. Indus. Electr., vol. 56, 2259- 2269, 2009.
  • [90] C. Han, A. Q. Huang, M. E. Baran, S. Bhattacharya, W. Litzenberger, L. Anderson, A. L. Johnson, and A. A. Edris, "STATCOM impact study on the integration of a large wind farm into a weak loop power system," IEEE Trans. Energy Convers., vol. 23, 226-233, 2008
  • [91] R. Mihalic and I. Papic, “Static Synchronous Series Compensator – A Mean for Dynamic Power Flow Control in Electric Power Systems”, Electr.Power Syst. Res, 45(1)(1998), 65–72.
  • [92] Xiao-Ping Zhang, “Advanced modeling of the Multicontrol Functional Static Synchronous Series Compensator (SSSC) in Newton Power Flow”, IEEE Trans. on PWRS, 18(4)(2003), 1410–1416.
  • [93] I. Ngamroo and W. Kongprawechnon, “A Robust Controller Design of SSSC for Stabilization of Frequency Oscillations in Interconnected Power Systems”, Electr.Power Syst. Res, 67(2)(2003), 161–176.
  • [94] B. N. Singh, A. Chandra, K. Al-Haddad, and B. Singh, “Performance of Sliding Mode and Fuzzy Controllers for a Static Synchronous Series Compensator”, IEE Proc.-Gener. Transmi. Distib., 146(2)(1999), 200–206.
  • [95] G. N. Pillai, A. Ghosh, and A. Joshi, “Torsional Interaction Between an SSSC and a PSS in a Series Compensated Power System”, IEE Proc.-Gener. Transmi. Distib., 149(6)(2002), 653–658.
  • [96] G. N. Pillai, A. Ghosh, and A. Joshi, “Torsional Oscillation Studies in an SSSC Compensated Power System”, Electr.Power Syst. Res, 55(1)(2000), 57–64.
  • [97] L. Gyugyi, C. D. Schauder, and K. K. Sen, “Static Synchronous Series Compensator: A Solid State Approach to the Series Compensation of Transmission Lines”, IEEE Trans. on PWRD, 12(1)(1997), 406–417.
  • [98] H. F. Wang, “Static Synchronous Series Compensation to damp power system oscillations”, Electr.Power Syst. Res, 54(2)(2000), 113–119.
  • [99] P. Kumkratug and M. H. Haque, “Improvement of Stability Region and damping of a Power System by Using SSSC”, IEEE Power Engineering Society General Meeting, 2003, vol. 3, 1417–1421.
  • [100] Shakarami, MR; Kazemi, A: “Evaluation of Different Options for SSSC-Based Stabilizer to Improve Damping Inter-Area Oscillations in a Multi-Machine Power System”, Int. Rev. Electr. Eng., vol. 4 n. 6, 1336-1346, 2009
  • [101] F. Al-Jowder, "Improvement of synchronizing power and damping power by means of SSSC and STATCOM," Elect. Power Syst..Res.,77(2007), 1112-1117.
  • [102] M. H. Haque, "Use of SSSC to improve first swing stability limit and damping of a power system," Australian Journal of Electrical and Electronics Engineering, vol. 3, 17-26, 2006.
  • [103] M. El Moursi, A. M. Sharaf, and K. El-Arroudi, "Optimal control schemes for SSSC for dynamic series compensation," Electr.Power Syst. Res, vol. 78, 646-656, 2008.
  • [104] A.Kazemi, M. Ladjevardi, and M. A. S. Masoum, "Optimal selection of SSSC based damping controller parameters for improving power system dynamic stability using genetic algorithm," Iran. J. Sci.Tech., vol. 29, 1-10, 2005.
  • [105] A.Vinkovic and R. Mihalic, "A current-based model of the static synchronous series compensator(SSSC) for Newton- Raphson power flow," Electr.Power Syst. Res, vol. 78, 1806- 1813, 2008.
  • [106] S. Panda, "Multi-objective evolutionary algorithm for SSSCbased controller design," Electr.Power Syst. Res, vol. 79, 937- 944, 2009.
  • [107] R. Hooshmand and M. Azimi, "Investigation of dynamic instability of torsional modes in power system compensated by SSSC and fixed capacitor," Int. Rev. Electr. Eng., vol. 4, 129- 138, 2009.
  • [108] M. Bongiorno, J. Svensson, and L. Ängquist, "Single-phase VSC based SSSC for subsynchronous resonance damping," IEEE Trans. Power Deliv., vol. 23, 1544-1552, 2008.
  • [109] C. Pradhan and P. W. Lehn, "Frequency-domain analysis of the static synchronous series compensator," IEEE Trans. Power Deliv., vol. 21, 440-449, 2006.
  • [110] T. Makombe and N. Jenkins, investigation of a unified power flow controller, Generation Transmission and Distribution, lEE Proceedings, Vol 146, No.4, 1999, 400-408.
  • [111] H, Fujita, Y. Watanabe and H. Akagi, Control and analysis of a unified power flow controller, IEEE Trans. Power Electr.,Vol: 14 Issue: 6, 1999, 1021-1027
  • [112] H.F. Wang, Damping function of unified power flow controller, Generation Transmission and Distribution, lEE Proceedings, Volume 146, No.1, 1999, 81-87.
  • [113] H.F. Wang, Application· of modeling UPFC into multi-machine power systems, Generation Transmission and Distribution, lEE Proceedings, Volume 146, No.3, 1999, 306-312.
  • [114] Z. Huang, Y. Ni, F.F. Wu, Shousun and B. Zhang, Application of unified power flow controller in interconnected power systems-modelling, interface, control strategy, and case study, IEEE Trans. Power Electr,Volume: 15 Issue: 2, May 2000, 817-824
  • [115] Z.L. Meng and P.L. So, A current injection UPFC model for enhancing power system dynamic performance, Power Engineering Society Winter Meeting, 2000, 1544 -1549.
  • [116] K. Schoder, A. Hasanovic and A. Feliachi, Load-flow and dynamic model of the unified power flow controller (UPFC) within the Power System Toolbox (PST), IEEE Midwest Symposium on Circuits and Systems, 2000, 634 -637.
  • [117] S. Mishra, P.K. Dash and G. Panda, TS-fuzzy controller for UPFC in a multi-machine system, Generation Transmission and Distribution, lEE Proceedings, Vol 147, No.1, 2000, 15-22.
  • [118] K. Schoder, A. Hasanovic, A. Feliachi, Power system damping using fuzzy controlled unified power flow controller, IEEE Power Engineering Society Winter Meeting, 2001, 617- 622
  • [119] S. Mishra, P.K. Dash and G. Panda, A radial basis function neural network controller for UPFC, IEEE Trans. Power Electr , 15(4). 2000, 1293 -1299
  • [120] M. Vilathgamuwa, X. Zhu and S.S. Choi, A robust control method to improve the performance of a unified power flow controller, Electric Power System Research, 55, 2000, Page(s) 103-111.
  • [121] B.C. Pal, Robust damping of interarea oscillations with unified power flow controller, Generation Transmission and Distribution, lEE Proceedings, 149 (6), 2002, 733-738.
  • [122] J.C. Seo, S. Moon; J.K. Park and J.W. Choe, Design of a robust UPFC controller for enhancing the small signal stability in the multi-machine power systems, Power Engineering Society Winter Meeting, 2001, 1197 -1202
  • [123] H.F. Wang and Q.H. Wu, Multivariable design of a multiplefunctional unified power flow controller, Power Engineering Society Summer Meeting, 2000, 1895 -1900
  • [124] H.F. Wang, Interactions and multivariable design of multiple control functions of a unified power flow controller, Electr.Power Syst. Res, 24, 2002, 591-600.
  • [125] H. Xie, Z. Xu, Q. Lu, Y.H. Song, A. Yokoyama and M. Goto, Integrated linear and nonlinear control of unified power flow controllers for enhancing power system stability, Electric Power Components and Systems, 31, 335-347, 2003
  • [126] H. Sawhney and B. Jeyasurya, "Application of unified power flow controller for available transfer capability enhancement," Electr.Power Syst. Res, vol. 69, 55-160, 2004.
  • [127] E. Gholipour and S. Saadate, "Improving of transient stability of power systems using UPFC," IEEE Trans. Power Deliv., vol. 20, 1677-1682, 2005.
  • [128] H. Fujita, H. Akagi, and Y. Watanabe, "Dynamic control and performance of a unified power flow controller for stabilizing an AC transmission system," IEEE Trans. Power Electr., vol. 21, 1013-1020, 2006.
  • [129] A.T. Al-Awami, Y. L. Abdel-Magid, and M. A. Abido, "A particle-swarm-based approach of power system stability enhancement with unified power flow controller," Int. J. Electr. Power Energy Syst., vol. 29, pp. 251-259, 2007.
  • [130] L. Liu, P. Zhu, Y. Kang, and J. Chen, "Power-flow control performance analysis of a unified power-flow controller in a novel control scheme," IEEE Trans. Power Deliv., vol. 22, pp. 1613-1619, 2007.
  • [131] H. I. Shaheen, G. I. Rashed, and S. J. Cheng, "Design of new nonlinear optimal predictive controller for Unified Power Flow Controller," IEEE Power and Energy Society General Meeting: PES, Pittsburgh, PA, 2008.
  • [132] J. G. Singh, S. N. Singh, and S. C. Srivastava, "Optimal placement of unified power flow controller based on system loading distribution factors," Electric Power Components and Systems, vol. 37, 441-463, 2009.
  • [133] H. Shayeghi, H. A. Shayanfar, S. Jalilzadeh, and A. Safari, "Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO," Energy Convers. Manag., vol. 50, pp. 2554-2561, 2009.
  • [134] M. H. Kang, "Simulink-based modelling and simulation for a single-phase UPFC," Transactions of the Korean Institute of Electrical Engineers, vol. 58, 523-530, 2009.
  • [135] G. S. Ilango, C. Nagamani, A. V. S. S. R. Sai, and D. Aravindan, "Control algorithms for control of real and reactive power flows and power oscillation damping using UPFC," Electr.Power Syst. Res , vol. 79, 595-605, 2009.
  • [136] L. Gyugyi, K. K. Sen, and C. D. Schauder, "The interline power flow controller concept: A new approach to power flow management in transmission systems," IEEE Transactions on Power Delivery, vol. 14, 1115-1122, 1999.
  • [137] S. Mishra, P. K. Dash, P. K. Hota, and M. Tripathy, "Genetically optimized neuro-fuzzy IPFC for damping modal oscillations of power system," IEEE Trans. Power Syst, vol. 17, pp. 1140-1147, 2002.
  • [138] Fardanesh and A. Schaff, "Dynamic Studies of the NYS Transmission System with the Marcy CSC in the UPFC and IPFC Configurations," in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Dallas, TX, 2003, pp. 1175-1179.
  • [139] X. Wei, J. H. Chow, B. Fardanesh, and A. A. Edris, "A dispatch strategy for an interline power flow controller operating at rated capacity,"IEEE PES Power Systems Conference and Exposition, New York, 2004, pp. 1459-1465.
  • [140] R. L. Vasquez-Arnez and L. Cera Zanetta Jr, "Operational analysis and limitations of the GIPFC (generalized interline power flow controller)," in 2005 IEEE Russia Power Tech, PowerTech, St. Petersburg, 2005.
  • [141] Kazemi and E. Karimi, "The effect of Interline Power Flow Controller (IPFC) on damping inter-area oscillations in the interconnected power systems," IEEE International Symposium on Industrial Electronics, Montreal, 2006, pp. 1911-1915.
  • [142] A.Kazemi and E. Karimi, "The effect of an Interline Power Flow Controller (IPFC) on damping inter-area oscillations in interconnected power systems," Scientia Iranica, vol. 15, pp. 211-217, 2008.
  • [143] X. P. Zhang, "Robust modeling of the interline power flow controller and the generalized unified power flow controller with small impedances in power flow analysis," Electrical Engineering, vol. 89, pp. 1-9, 2006.
  • [144] Y. Zhang and C. Chen, "A novel power injection model of IPFC for power flow analysis inclusive of practical constraints," IEEE Trans. Power Syst., vol. 21, pp. 1550-1556, 2006.
  • [145] G. Benysek, "A probabilistic approach to optimizing power rating of interline power flow controllers in distributed generation power systems," Journal of the Chinese Institute of Engineers, vol. 30, pp. 1213-1221, 2007.
  • [146] K. R. Padiyar and N. Prabhu, "Analysis of SSR with threelevel twelve-pulse VSC-based interline power-flow controller," IEEE Trans. Power Deliv., vol. 22, pp. 1688-1695, 2007.
  • [147] J. Zhang and A. Yokoyama, "Application of interline power flow controller to ATC enhancement by optimal power flow control," in 2007 IEEE Lausanne POWERTECH, Proceedings, Lausanne, 2007, pp. 1226-1231.
  • [148] V. Azbe and R. Mihalic, "The Control Strategy for an IPFC Based on the Energy Function," IEEE Trans. Power Syst., 2008.
  • [149] S. M. Moghadasi, A. Kazemi, M. Fotuhi-Firuzabad, and A. A. Edris, "Composite system reliability assessment incorporating an interline power-flow controller," IEEE Transactions on Power Delivery, vol. 23, pp. 1191-1199, 2008.
  • [150] M. Parimi, I. Elamvazuthi, and N. Saad, "Interline power flow controller (IPFC) based damping controllers for damping low frequency oscillations in a power system," in 2008 IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, Singapore, 2008, pp. 334-339.
  • [151] V. Azbe and R. Mihalic, "Energy function for an interline power-flow controller," Electric Power Systems Research, vol. 79, pp. 945-952, 2009.
  • [152] S. Bhowmick, B. Das, and N. Kumar, "An advanced IPFC model to reuse newton power flow codes," IEEE Transactions on Power Systems, vol. 24, pp. 525-532, 2009.
  • [153] A.Vinkovic and R. Mihalic, "A current-based model of an IPFC for Newton-Raphson power flow," Electric Power Systems Research, vol. 79, pp. 1247-1254, 2009.
  • [154] S. Gerbex, R. Cherkaoui, and A. J. Germond, “Optimal Location of Multi-Type FACTS Devices in a Power System by Means of Genetic Algorithms”, IEEE Trans. PWRS, 16(3)(2001), pp. 537–544.
  • [155] J. Hao, L. B. Shi, and Ch. Chen, “Optimizing Location of Unified Power Flow Controllers by Means of Improved Evolutionary Programming”, IEE Proc. Genet. Transm. Distrib., 151(6)(2004), 705–712.
  • [156] F. G. M. Lima, D. Galiana, I. Kockar, and J. Munoz, “Phase Shifter Placement in Large-Scale Systems via Mixed Integer Linear Programming”, IEEE Trans. PWRS, 18(3)(2003),1029– 1034.
  • [157] N. K. Sharma, A. Ghosh, and R. K. Varma, “A Novel Placement Strategy for FACTS Controllers”, IEEE Trans.PWRD, 18(3)(2003), 982–987.
  • [158] H. F. Wang, F. J. Swift, and M. Li, “Indices for Selecting the Best Location of PSSs or FACTS-Based Stabilizers in Multimachine Power Systems: A Comparative Study”, IEE Proc. Genet. Transm. Distrib., 144(2)(1997),pp. 155–159.
  • [159] H. F. Wang, “An Eigensolution Free Method of Reduced- Order Modal Analysis to Select the Installing Locations and Feedback Signals of FACTS-Based Stabilizers”, Int. Journal of Electrical Power and Energy Systems,21(1999), pp. 547–554.
  • [160] N. Yang, Q. Liu, and J. D. McCalley, “TCSC Controller Design for Damping Interarea Oscillations”, IEEE Trans. PWRS, 13(4)(1998), pp. 1304–1310.
  • [161] A. M. Kulkarni and K. R. Padiyar, “Damping of Power Swings Using Series FACTS Controllers”, Int. J. Elect. Power Energy Sys., 21(1999), pp. 475–495.
  • [162] A. D. Rosso, C. A. Conizares, and V. M. Dona, “A Study of TCSC Controller Design for Power System Stability Improvement”, IEEE Trans. PWRS, 18(2003), pp. 1487–1496.
  • [163] M. M. Farsangi, Y. H. Song, and K. Y. Lee, “Choice of FACTS Device Control Inputs for Damping Interarea Oscillations”, IEEE Trans. PWRS, 19(2)(2004), pp. 1135–1143.
  • [164] J. M. Ramirez and I. Coronado, “Allocation of the UPFC to Enhance the Damping of Power Oscillations”, Int. Journal of Electrical Power and Energy Systems, 24(2002), pp. 355–362.
  • [165] B. Chaudhuri, B. C. Pal, A. C. Zolotas, I. M. Jaimoukha, and T. C. Green, “Mixed-Sensitivity Approach to H∞ Control of Power System Oscillations Employing Multiple FACTS Devices”, IEEE Trans. PWRS, 18(3)(2003), pp. 1149–1156.
  • [166] B. Chaudhuri and B. C. Pal, “Robust Damping of Multiple Swing Modes Employing Global Stabilizing Signals with a TCSC”, IEEE Trans. PWRS, 19(1)(2004), pp. 499–506.
  • [167] L. Fan, A. Feliachi, and K. Schoder, “Selection and Design of a TCSC Control Signal in Damping Power System Interarea Oscillations for Multiple Operating Conditions”, Electric Power Systems Research, 62(1)(2002), pp. 127–137.
  • [168] Eslami M., Shareef H., Mohamed A., Coordinated Design of PSS and TCSC Controller for Power System Stability Improvement, IEEE International Conference on Power and Energy, IPEC’10 Singapore
  • [169] Eslami M., Shareef H., Mohamed A., optimization and coordination of damping controls for optimal oscillations damping in multi-machine power system, Inter. Rev. Electr. Eng., 4(2011) No.6.
  • [170] M.L. Gibbard, D.L. Vowles and P. Pourbeik, Interactions between, and effectiveness of, power system stabilizers and FACTS device stabilizers in multi-machine systems, Power Systems, IEEE Transactions on , 15 (2000) No. 2,748 -755
  • [171] H.F. Wang, F.L. Swift, A unified model for the analysis of FACTS devices in damping power system oscillations. I. Single-machine infinite-bus power systems, Power Delivery, IEEE Transactions on ,Volume: 12 Issue: 2, 1997, 941 -946
  • [172] H.F. Wang, F.L. Swift, M. Li, A unified model for the analysis of FACTS devices in damping power system oscillations. II. Multi-machine power systems, Power Delivery, IEEE Transactions on ,Volume: 13 Issue: 4, Oct. 1998, 1355 -1362
  • [173] A.A. Hashmani, Y. Wang and T.T. Lie, Enhancement of power system transient stability using a nonlinear coordinated excitation and TCPS controller, Electric Power System Research, 24, 2002, 201-214.
  • [174] H. Chen, Y. Wang, and R. Zhou, Transient and voltage stability enhancement via coordinated excitation and UPFC control, lEE Proceedings Generation Transmission and Distribution, 2001, 201-208.
  • [175] H. Chen, Y. Wang, and R. Zhou, Transient stability enhancement via coordinated excitation and UPFC control, Electric Power System Research, 24, 2002, 19-29.
  • [176] S.C. Lee, S. Moon, J.C. Seo and J.K. Park, Observer-based decentralized optimal controller design of PSS and TCSC for enhancement of power system dynamic stability, Power Engineering Society Summer Meeting, 2000, 1942 -1945
  • [177] G. Li, T.T. Lie, G.B. Shrestha and K.L. Lo, Real-time coordinated optimal FACTS controllers, Electric Power System Research, 52, 1999, 273-286.
  • [178] G. Li, T.T. Lie, G.B. Shrestha and K.L. Lo, Design and application of coordinated multiple FACTS controllers, Generation Transmission and Distribution, lEE Proceedings, Volume 147, No.2, 2000, 112-120.
  • [179] G.N. Taranto, L.K. Shiau, H.Chow and H.A. Othmai, Robust decentralized design for multiple FACTS damping controllers, Generation Transmission and Distribution, lEE Proceedings, Volume 144, No.1, 1997, 61-67.
  • [180] J.J. Sanchez-Gasca, Coordinated control of two FACTS devices for damping interarea oscillations, Power Systems, IEEE Transactions on ,Volume: 13 Issue: 2, 1998, 428 -434
  • [181] P. Pourbeik, M.J. Gibbard, Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multi machine power system for enhancing dynamic performance, IEEE Trans. Power Syst., 13(1998), 473 -479
  • [182] W. Fang and H.W. Ngan, Enhancing small signal power system stability by coordinating unified power flow controller with power system stabilizer, Electric Power System Research, 65, 2003, 91-99.
  • [183] J.M. Ramirez, R.J. Davalos and V.A Valenzuela, Coordination of FACTS based stabilizers for damping oscillations, Power Engineering Review, IEEE, 20 (2000) No. 12, 46 -49
  • [184] L. X zhang, E.N. Lerch and D. Povh, Optimization and coordination of damping controls for improving system dynamic performance, IEEE Trans. Power Syst., ,Volume: 16 Issue: 3, Aug. 2001, 473-480
  • [185] S. Panda and N. P. Padhy, "APPLICATION OF GENETIC ALGORITHM FOR PSS AND FACTS-BASED CONTROLLER DESIGN," International Journal of Computational Methods, vol. 5, pp. 607-620, Dec 2008.
  • [186] R. Pouffamazan, S. Vaez-Zadeh, H. Nourzadeh, and Ieee, "Power system MIMO identification for coordinated design of PSS and TCSC controller," IEEE-Power-Engineering-Society General Meeting, Tampa, FL, 2007, pp. 515-522.
  • [187] S. Panda and R. Patel, "Damping power system oscillations by genetically optimised PSS and TCSC controller," Int. J. Energy Technol. Policy, vol. 5, pp. 457-474, 2007.
  • [188] S. Khanmohammadi and O. Ghaderi, "Simultaneous coordinated tuning of fuzzy PSS and Fuzzy FACTS device stabilizer for damping power system oscillations in multi machine power system," IEEE International Conference on Fuzzy Systems, London, 2007.
  • [189] D. Z. Fang, S. Q. Yuan, Y. J. Wang, and T. S. Chung, "Coordinated parameter design of STATCOM stabiliser and PSS using MSSA algorithm," IET Generation, Transmission and Distribution, vol. 1, pp. 670-678, 2007.
  • [190] Z. Zou, Q. Jiang, P. Zhang, and Y. Cao, "Application of multiobjective evolutionary algorithm in coordinated design of PSS and SVC controllers," in Lecture Notes in Computer Science. vol. 3801 LNAI Xi'an, 2005, pp. 1106-1111.
  • [191] Eslami M., Shareef H., Mohamed A., Khajehzadeh M., Coordinated Design of PSS and SVC Damping Controller Using CPSO In: IEEE 5th International Power Engineering and Optimization Conference, Malaysia: 2011, pp. 6-11
  • [192] L. J. Cai and I. Erlich, "Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems," IEEE Trans Power Syst, vol. 20, pp. 294-300, 2005.
  • [193] M. Najafi, A. Kazemi, and Ieee, "Coordination of PSS and FACTS damping controllers in large power systems for dynamic stability improvement," International Conference on Power Systems Technology, 2006, pp. 2518-2523.
  • [194] D. Povh, “FACTS Controller in Deregulated Systems”, Power Systems Symposium, Rio de Janeiro, Brazil, May 1998.
  • [195] K.Matsuno, I. Iyoda, and Y. Oue, “An Experience of FACTS Development 1980s and 1990s”, IEEE PES Transmission and Distribution Conference and Exhibition, 2002, pp. 1378 –1381.
  • [196] A. Edris, “FACTS Technology Development: an Update”, IEEE Power Engineering Review, 20(3)(2000), pp. 4 – 9.
  • [197] C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T. W. Cease, and A. Edris, “Operation of ±100 MVAR TVA STATCON”, IEEE Trans. PWRD, 12(4)(1997), pp. 1805–1811.
  • [198] C. Schauder, E. Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A. S. Mehraban, and A. Edris, “AEP UPFC Project: Installation, Commissioning and Operation of the ±160 MVA STATCOM (Phase I)”, IEEE Trans. Power Deliv., 13(4)(1998), pp. 1530 – 1535.
  • [199] B. A. Renz, A. Keri, A. S. Mehraban,, C. Schauder, E. Stacey, L. Kovalsky, L. Gyugyi, and A. Edris, “AEP Unified Power Flow Controller Performance”, IEEE Trans. Power Deliv., 14(4)(1999), pp. 1374 – 1381.
  • [200] B. Fardanesh, A. Edris, B. Shperling, E. Uzunovic, S. Zelingher, L. Gyugyi, L. Kovalsky, S. Macdonald, and C. Schauder, “NYPA Convertible Static Compensator Validation of Controls and Steady State Characteristics”, CIGRE 14-103, France, August 2002.
  • [201] D. J. Hanson, C. Hotwill, B. D. Gemmell, and D. R. Monkhouse, “A STATCOM-Based Relocatable SVC Project in the UK for National Grid”, IEEE Power Engineering Society Winter Meeting, 27-31 January 2002, vol. 1, pp. 532 –537.
  • [202] G. Reed, J. Paserba, T. Croasdailc, et al., “The VELCO STATCDM Based Transmission System Project”, IEEE Power Engineering Society Winter Meeting, 28 January - 1 February Val. 3(2001), pp. 1109–1114.
  • [203] G. Reed, J. Paserba, T. Croasdailc, et al., “SDG&E Talega STATCOM Project-System Analysis, Design and Configuration”, IEEE/PES Transmission and Distribution Conference and Exhibition, Asia Pacific., 6–10 October 2002, Vol. 2, pp. 1393 –1398.
  • [204] Q. Yu, P. Li, W. Liu, and X. Xie, “Overview of STATCOM Technologies”, Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Vol. 2, pp. 647 – 652.
  • [205] M. T. Bina, M. D. Eskandari, and M. Panahlou, “Design and Installation of a ±250 kVAR D-STATCOM for a Distribution System”, Electr. Power Syst. Res., 73(2)(2005), pp. 383–391.
  • [206] J. Paserba, “Recent Power Electronics/FACTS Installations to Improve Power System Dynamic Performance”, IEEE Power Engineering Society General Meeting, 2007, pp. 1 – 4.
  • [207] Y. Han, C. Chung, J. Choi, D. Kim, and J. Yoon, "10MVA STATCOM installation and commissioning," Internatonal Conference on Power Electronics, Daegu, 2008, pp. 542-547.
  • [208] S. Shah and E. Orta, "Bayamon SVC project in Puerto Rico," in 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, Seattle, WA, 2009.
  • [209] D. Sullivan, R. Pape, J. Birsa, M. Riggle, M. Takeda, H. Teramoto, Y. Kono, K. Temma, S. Yasuda, K. Wofford, P. Attaway, and J. Lawson, "Managing fault-induced delayed voltage recovery in Metro Atlanta with the Barrow County SVC," in 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, Seattle, WA, 2009.
  • [210] Y. H. Liu, R. H. Zhang, J. Arrillaga, and N. R. Watson, “An Overview of Self-Commutating Converters and Their Application in Transmission and Distribution”, Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, 2005, 1 – 7.
  • [211] S. Bernet, “Recent Development of High Power Converters for Industry and Traction Applications”, IEEE Transactions on Power Electronics, 15(6)(2000), 1102–1117.
  • [212] P. K. Steimer, H. E. Gruning, J. Werninger, E. Carroll, S. Klaka, and S. Linder, “IGCT-A New Emerging Technology for High Power, Low Cost Inverters”, Proceedings of the IEEE 32nd Industrial Application Society Annual Meeting, IAS’97, October 5–9, 1997, vol. 2, 1592–1599.
  • [213] B. Zhang, A. Q. Huang, Y. Liu, and S. Atcitty, “Performance of the New Generation Emitter Turn–Off (ETO) Thyristor”, Proceedings of the IEEE 37th Industrial Application Society Annual Meeting, IAS’02, 2002, vol. 1, 559–563.
  • [214] S. Sirisukprasert, Y. Liu, Z. Xu, B. Zhang, X. Zhou, J. Hawley, and A. Q. Huang, “Power Stage and Control Design for the ETO-Based Cascaded-Multilevel Converter for FACTS Applications”, Proceedings of the 4th International Power Electronics and Motion Control Conference, IPEMC 2004, August 14–16, 2004, vol. 3, 1111–1117.
  • [215] A. Q. Huang, B. Chen, K. Tewari, and Z. Du, “Modular ETO Voltage Source Converter Enables Low Cost FACTS Controller Applications”, Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, 2006, 792–796.
  • [216] G. Ning, S. He, Y. Wang, L. Yao, and Z. Wang, “Design of Distributed FACTS Controller and Considerations for Transient Characteristics”, International Power Electronics and Motion Control Conference, 2006, 1 – 5.
  • [217] D. Divan, and H. Johal, “Distributed FACTS—A New Concept for Realizing Grid Power Flow Control”, IEEE Trans.Power Electr., 22(6) (2007), 2253 – 2260.
  • [218] E. Acha, C. R. Fuerte-Esquivel, and H. Ambriz-Perez, “Advanced SVC model for Newton-Raphson Load Flow and Newton Optimal Power Flow Studies”, IEEE Trans. PWRS, 15(1)(2000), 129–136.
  • [219] E. Acha, C. R. Fuerte-Esquivel, and H. Ambriz-Perez et al., FACTS: Modeling and Simulation in Power Networks, London, U.K.: Wiley, 2004.
  • [220] D. J. Gotham and G. T. Heydt, “Power Flow Control and Power Flow Studies for Systems with FACTS Devices”, IEEE Trans. PWRS, 13(1)(1998), 60–65.
  • [221] L. Gyugyi, K. K. Sen, and C. D. Schauder, “The Interline Power Flow Controller Concept: a New Approach to Power Flow Management in Transmission Systems”, IEEE Trans. PWRD, 14(3)(1999), 1115–1123.
  • [222] T. S. Chung, D. Qifeng, Z. Bomina, “Optimal Active OPF with FACTS Devices by Innovative Load-Equivalent Approach”, IEEE Power Eng. Rev., 20(5)(2000), 63–66.
  • [223] Ying Xiao, Y. H. Song, and Y. Z. Sun, “Power Flow Control Approach to Power Systems With Embedded FACTS Devices”, IEEE Trans. PWRS, 17(4)(2002), 943–950.
  • [224] T. S. Chung and Y. Z. Li, “A Hybrid GA Approach for OPF with Consideration of FACTS Devices”, IEEE Power Eng. Rev., 21(2)(2001), 47–50.
  • [225] W. Shao and V. Vittal, “LP-Based OPF for Corrective FACTS Control to Relieve Overloads and Voltage Violations”, IEEE Trans. PWRS, 21(4) (2006), 1832–1839.
  • [226] Y. Yang and M. Kazerani, “Power Flow Control Schemes for Series-Connected FACTS Controllers,” Electr.Power Syst. Res., 76(2006), 824–831.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0048-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.