PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza zjawiska korozji w sieciach wodociągowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of corrosion phenomena in water-pipe networks
Języki publikacji
PL
Abstrakty
PL
Korozja przewodów wodociągowych wykonanych z żeliwa i stali jest procesem niezwykle złożonym, na który wpływ mają praktycznie wszystkie parametry fizyczne, chemiczne i biologiczne właściwe w przypadku danej sieci. Korozja sieci, instalacji i urządzeń wodociągowych powoduje ogromne koszty, a jej skutki obniżają jakość wody transportowanej do odbiorców. W pracy podsumowano obecny stan wiedzy obejmujący mechanizm procesu korozji, towarzyszące mu reakcje oraz skład powstających produktów korozji. Omówiono też skład i struktury krystalograficzne powstających osadów korozyjnych, a także podjęto próbę scharakteryzowania wody osadowej towarzyszącej stałym produktom korozji. Wykazano, że woda osadowa charakteryzuje się zadziwiająco bogatym składem, a występujące w niej związki organiczne i nieorganiczne są oznaczane na poziomie stężeń wielokrotnie przekraczających wartości analizowane w wodzie wodociągowej. Omówiono również wpływ jakości wody wodociągowej oraz rodzaju jej domieszek na przebieg i intensywność procesów korozyjnych w sieci. Wykazano, że interakcje pomiędzy składnikami wody a produktami korozji obecnymi na ścianach przewodów w istotny sposób mogą pogarszać jakość transportowanej wody. Szczególną uwagę poświęcono uwalnianiu związków żelaza, migracji pierwiastków z korodujących materiałów, uwalnianiu siarczków oraz degradacji ubocznych produktów dezynfekcji. Złożoność procesu korozji, zależność jego przebiegu od jakości transportowanej wody, w połączeniu z niekorzystną strukturą materiałową sieci wskazuje, że procesy korozyjne jeszcze przez długie lata będą bardzo ważnym problemem eksploatacyjnym zakładów wodociągowych.
EN
Corrosion of cast-iron or steel water pipes is a highly complex process influenced by a diversity of physical, chemical and biological parameters specific to a given water-pipe network. Corrosion processes in the underground and on-ground infrastructure of a drinking water distribution system not only incur substantial costs, but also deteriorate the quality of the water transported to the user. The authors of this paper not only present a critical state-of-the-art review of the published literature on corrosion phenomena in drinking water distribution systems, but also evaluate some historical analyses of this subject. In the paper, attention has been focused on the mechanism governing the corrosion process, on the concomitant reactions, as well as on the composition of the corrosion products being formed. This includes the composition and crystal structure of the corrosion deposits, and the composition of steady water in the tubercles, which is concomitant with the occurrence of solid corrosion products. Steady water is characterized by a surprisingly rich diversity of components, where the concentrations of organic and inorganic compounds many times exceed the values measured in drinking water. Consideration has also been given to the impact of water quality on the development of corrosion processes in water-pipe networks. Much of the quality deterioration comes from the interactions between the water components and the corrosion products accumulating on the inner pipe walls. Other major issues considered in the review paper include the release of iron and sulfides, the migration of chemical elements from the corroding materials into the water, and the degradation of disinfection by-products. In conclusion, the complexity of the corrosion process, its dependence on the quality of the water being transported, as well as the poor material condition of the water-pipe networks (pipe service age effect) suggest that controlling corrosion in water-pipe networks will still be a great challenge for waterworks in the coming decade.
Czasopismo
Rocznik
Strony
27--40
Opis fizyczny
Bibliogr. 119 poz., rys., tab.
Twórcy
autor
autor
  • Uniwersytet im. Adama Mickiewicza, Wydział Chemii, Zakład Technologii Uzdatniania Wody, ul. M. Drzymały 24, 60-613 Poznań, jaceknaw@amu.edu.pl
Bibliografia
  • 1. J.H.G. VREEBURG, J.B. BOXALL: Discolouration in potable water distribution systems: A review. Water Research 2007, Vol. 41, pp. 519–529.
  • 2. Informacja z 24 marca 2011 r. MPWiK w m.st. Warszawie SA (praca niepublikowana).
  • 3. M. ŚWIDERSKA-BRÓŻ, M. WOLSKA: Główne przyczyny wtórnego zanieczyszczenia wody w systemie dystrybucji. Ochrona Środowiska 2006, vol. 28, nr 4, ss. 29–34.
  • 4. W.G. WHITMAN: Corrosion of iron. Chemical Reviews 1926, Vol. 2, No. 4, pp. 419–435.
  • 5. M. EDWARDS: Controlling corrosion in drinking water distribution systems: A great challenge for the 21st century. Water Science and Technology 2004, Vol. 49, No. 2, pp. 1–8.
  • 6. L.S. McNEILL, M. EDWARDS: Iron pipe corrosion in distribution systems. Journal American Water Works Association 2001, Vol. 93, No. 7, pp. 88–100.
  • 7. M. KWIETNIEWSKI, M. TŁOCZEK, L. WYSOCKI: Zasady doboru rozwiązań materiałowo-konstrukcyjnych do budowy przewodów wodociągowych. Izba Gospodarcza Wodociągi Polskie, Bydgoszcz 2011.
  • 8. http://www.pewik.gdynia.pl/?tree=28&id=46.
  • 9. http://www.zwik.zgora.pl/woda_siec.php.
  • 10. http://www.konin.pl/bip/index.php?d=pgopos.
  • 11. http://www.wodociagi.grudziadz.com.pl/index.php?m=m_el&id=44.
  • 12. http://www.pwik.siedlce.pl/index.php?option=com_content &view=article&id=14&Itemid=20.
  • 13. http://www.rpwik.sosnowiec.pl/index.php?page=gw_siec_wodociagowa.
  • 14. E. VESCHETTI, L. ACHENE, E. FERRETTI, L. LUCENTINI, G. CITTI, M. OTTAVIANI: Migration of trace metals in Italian drinking waters from distribution networks. Toxicological and Environmental Chemistry 2010, Vol. 92, No. 3, pp. 521–535.
  • 15. G.J. KIRMEYER, W. RICHARDS, C.D. SMITH: An Assessment of Water Distribution Systems and Associated Research Needs. AWWA Research Foundation, Denver 1994.
  • 16. Water Stats 2002 Distribution Survey. AWWA Research Foundation, Denver 2004.
  • 17. A. GRÜNWALD, B. ŠTASTNÝ, K. SLAVÍČKOVÁ, M. SLAVÍČEK: Iron corrosion in drinking water distribution system. Proc. of Workshop, Prague 2006, Vol. 2, pp. 652–653.
  • 18. A.L. KOWAL, M. ŚWIDERSKA-BRÓŻ: Oczyszczanie wody. Podstawy teoretyczne i technologiczne, procesy i urządzenia. Wydawnictwo Naukowe PWN, Warszawa 2007.
  • 19. S.A. IMRAN, R.R. SADIQ, Y.Y. KLEINER: Identifying research – needs related to impacts of water quality on the integrity of distribution infrastructure. Infra 2006, Québec City, pp. 1–10.
  • 20. Z. TANG, S. HONG, W. XIAO, J. TAYLOR: Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system. Corrosion Science 2006, Vol. 48, No. 2, pp. 322–342.
  • 21. H. HOTLOŚ: Analiza uszkodzeń i kosztów naprawy przewodów wodociągowych w okresie zimowym. Ochrona Środowiska 2009, vol. 31, nr 2, ss. 41–48.
  • 22. F. TENG, Y.T. GUAN, W.P. ZHU: Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation. Corrosion Science 2008, Vol. 50, No. 10, pp. 2816–2823.
  • 23. M. SANCY, Y. GOURBEYRE, E.M.M. SUTTER, B. TRIBOLLET: Mechanism of corrosion of cast iron covered by aged corrosion products: Application of electrochemical impedance spectrometry. Corrosion Science 2010, Vol. 52, pp. 1222–1227.
  • 24. A. KOTOWSKI: Analiza hydrauliczna zjawisk wywołujących zmniejszenie przepływności rurociągów Ochrona Środowiska 2010, vol. 32, nr 1, ss. 27–32.
  • 25. H. HOTLOŚ: Badania zmienności strat wody w wybranych systemach wodociągowych w latach 1990–2008. Ochrona Środowiska 2010, vol. 32, nr 4, ss. 21–25.
  • 26. Polska norma PN-EN ISO 8044: Korozja metali i stopów. Podstawowe terminy i definicje.
  • 27. P. SARIN, V.L. SNOEYINK, D.A. LYTLE, W.M. KRIVEN: Iron corrosion scales: Model for scale growth, iron release and colored water formation. Journal of Environmental Engineering 2004, Vol. 130, No. 4, pp. 364–373.
  • 28. I.B. BEECH, C.C. GAYLARDE: Recent advances in the study of biocorrosion: An overview. Revista de Microbiologia 1999, Vol. 30, No. 3, pp. 177–190.
  • 29. C. AGATEMOR, P.O. OKOLO: Studies of corrosion tendency of drinking water in the distribution system at the University of Benin. Environmentalist 2008, Vol. 28, No. 4, pp. 379–384.
  • 30. J. LIN, M. ELLAWAY, R. ADRIEN: Study of corrosion material accumulated on the inner wall of steel water pipe. Corrosion Science 2001, Vol. 43, No. 11, pp. 2065–2081.
  • 31. D. STAROSVETSKY, R. ARMON, J. YAHALOM, J. STAROSVETSKY: Pitting corrosion of carbon steel caused by iron bacteria. International Biodeterioration and Biodegradation 2001, Vol. 47, No. 2, pp. 79–87.
  • 32. P. SARIN: Iron release from corrosion scales in old iron/steel drinking water distribution pipes. Ph.D. Dissertation, University of Illinois at Urbana-Champaign 2002.
  • 33. I. FRATEUR, C. DESLOUIS, L. KIENE, Y. LEVI, B. TRIBOLLET: Free chlorine consumption induced by cast iron corrosion in drinking water distribution systems. Water Research 1999, Vol. 33, No. 8, pp. 1781–1790.
  • 34. Internal Corrosion of Water Distribution Systems. Second edition. AWWA Research Foundation, Denver 1996.
  • 35. L. KIÉNÉ, W.LU, Y LÉVI: Relative importance of the phenomena responsible for chlorine decay in drinking water distribution systems. Water Science and Technology 1998, Vol. 38 No. 6, pp. 219–227.
  • 36. I. FRATEUR, C. DESLOUIS, M.E. ORAZEM, B. TRIBOLLET: Modeling of the cast iron/drinking water system by electrochemical impedance spectroscopy. Electrochimica Acta 1999, Vol. 44, pp. 4345–4356.
  • 37. D.A. STONE, R.E. GOLDSTEIN: Tubular precipitation and redox gradients on a bubbling template. Proc. of the National Academy of Sciences of the USA, 2004, Vol. 101, No. 32, pp. 11537–11541.
  • 38. B. KOŁWZAN: Zastosowanie czujników biologicznych (biosensorów) do oceny jakości wody. Ochrona Środowiska 2009, vol. 31, nr 4, ss. 3–14.
  • 39. M. ŚWIDERSKA-BRÓŻ: Czynniki współdecydujące o potencjale powstawania i rozwoju biofilmu w systemach dystrybucji wody. Ochrona Środowiska 2010, vol. 32, nr 3, ss. 7–13.
  • 40. C. MYERS, K.H. NEALSON: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, Vol. 240, pp. 1319–1321.
  • 41. C.O. OBUEKWE, D.W.S. WESTLAKE, J.A. PLAMBECK, F.D. COOK: Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. I. Polarization characteristics. Corrosion 1981, Vol. 37, No. 8, pp. 461–467.
  • 42. A.M. GOUNOT: Microbial oxidation and reduction of manganese: Consequences in groundwater and applications. FEMS Microbiology Reviews 1994, Vol. 14, pp. 339–350.
  • 43. B.J. LITTLE, P. WAGNER, K. HART, R. RAY, D. LAVOIE, K. NEALSON, C. AGUILAR: The role of metal-reducing bacteria in microbiologically influenced corrosion. Proc. NACE Corrosion 1997, NACE International, Houston, TX, Paper No. 215.
  • 44. S.H. LEE, J.T. O’CONNOR, S.K. BANERJI: Biologically mediated corrosion and its effects on water quality in distribution systems. Journal American Water Works Association 1980, Vol. 72, No. 11, pp. 636–645.
  • 45. J. NAWROCKI [red.]: Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne. Wyd. UAM Poznań, PWN, Warszawa 2010.
  • 46. J. NAWROCKI, U. RACZYK-STANISŁAWIAK, J. ŚWIETLIK, A. OLEJNIK, M. SROKA: Corrosion in a distribution system. Steady water and its composition. Water Research 2010, Vol. 44, No. 6, pp. 1863–1862.
  • 47. O.H. TUOVINEN, K.S. BUTTON, A. VUORINEN, L. CARLSON, D.M. MAIR, L.A. YUT: Bacterial, chemical and mineralogical characteristics of tubercles in distribution pipelines. Journal American Water Works Association 1980, Vol. 72, No. 11, pp. 626–635.
  • 48. B.J. LITTLE, RI. RAY, J.S. LEE, T.L. GERKE: Tubercles and localized corrosion on carbon steel. Corrosion Management 2010, pp. 12–15.
  • 49. P. SARIN, V.L. SNOEYINK, J. BEBEE, K.K. JIM, M.A. BECKETT, W.M. KRIVEN, J.A. CLEMENT: Iron release from corroded iron pipes in drinking water distribution systems: Effect of dissolved oxygen. Water Research 2004, Vol. 38, No. 5, pp. 1259–1269.
  • 50. T.L. GERKE, J.B. MAYNARD, M.R. SCHOCK, D.L. LYTLE: Physicochemical characterization of five iron tubercles from a single drinking water distribution system: Possible new insights on their formation and growth. Corrosion Science 2008, Vol. 50, No. 7, pp. 2030–2039.
  • 51. I.R. McGILL, B. McENANEY, D.C. SMITH: Crystal structure of green rust formed by corrosion of cast iron. Nature 1976, Vol. 259, p. 200.
  • 52. C. BARCHICHE, C. DESLOUIS, O. GIL, S. JOIRET, P. REFAIT, B. TRIBOLLET: Role of sulphate ions on the formation of calcareous deposits on steel in artificial seawater: The formation of Green Rust compounds during cathodic protection. Electrochimica Acta 2009, Vol. 54, pp. 3580–3588.
  • 53. P. REFAIT, J.-B. MEMET, C. BON, R. SABOT, J.-M.R. GÉNIN: Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corrosion Science 2003, Vol. 45, pp. 833–845.
  • 54. J. ŚWIETLIK, U. RACZYK-STANISŁAWIAK, P. PISZORA, J. NAWROCKI: Corrosion in drinking water pipes: The importance of green rusts. Water Research (in print).
  • 55. J.-M.R. GÉNIN, P. REFAIT, M. ABDELMOULA: Green rust and their relationship to iron corrosion: A key role in microbially influenced corrosion. Hyperfine Interactions 2002, Vol. 139/140, pp. 119–131.
  • 56. S. PINEAU, R. SABOT, L. QUILLET, M. JEANNIN, C. CAPLET, I. DUPONT-MORRAL, P. REFAIT: Formation of the Fe(II-III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite reductase. Corrosion Science 2008, Vol. 50, pp. 1099–1111.
  • 57. M. LANGUMIER, R. SABOT, R. OBAME-NDONG, M. JEANNIN, S. SABLE, P. REFAIT: Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria. Corrosion Science 2009, Vol. 51, pp. 2694–2702.
  • 58. J.-M.R. GÉNIN, P. REFAIT, L. SIMON, S.H. DRISSI: Preparation of Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds: Hyperfine interaction characteristic and stoichiometry of hydroksy-chloride, sulphate and carbonate. Hyperfine Interactions 1998, Vol. 111, pp. 313–316.
  • 59. P. REFAIT, S.H. DRISSI, J. PYTKIEWICZ, J.-M.R. GÉNIN: The anionic species competition in iron aqueous corrosion: Role of various green rust compounds. Corrosion Science 1997, Vol. 39, No. 9, pp. 1699–1710.
  • 60. R. SABOT, M. JEANNIN, M. GADOULEAU, Q. GUO, E. SICRE, P. RAFAIT: Influence of lactate ions on the formation of rust. Corrosion Science 2007 Vol. 49, pp. 1610–1624.
  • 61. J.-M.R. GÉNIN, C. RUBY: Composition and anion ordering in some FeII-III hydroxysalt green rusts (carbonate, oxalate, methanoate): The fougerite mineral. Solid State Science 2008, Vol. 10, pp. 244–259.
  • 62. G. ONA-NGUEMA, M. ABDELMOULA, F. JORAND, O. BENALI, A. GÉHIN, J.-C. BLOCK, J.-M.R. GÉNIN: Iron (II,III) hydroxycarbonate green rust formation and stabilization from lepidokrocite bioreduction. Environmental Science & Technology 2002, Vol. 36, pp. 16–20.
  • 63. C.-Y. PENG, G.V. KORSHIN, R.L. VALENTINE, A.S. HILL, M.J. FRIEDMAN, S.H. REIBER: Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Research 2010, Vol. 44, pp. 4570–4580.
  • 64. S.C. MORTON, M. EDWARDS: Reduced phosphorus compounds in the environment. Critical Reviews in Environmental Science and Technology 2005, Vol. 35, pp. 333–364.
  • 65. S.C. MORTON, Y. ZHANG, M.A. EDWARDS: Implication of nutrient release from iron metal for microbial regrowth in water distribution systems. Water Research 2005, Vol. 39, pp. 2883–2892.
  • 66. T.L. GERKE, K.G. SCHECKEL, J.B. MAYNARD: Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products. Science of the Total Environment 2010, Vol. 408, pp. 5845–5853.
  • 67. J.R. BAYLIS: Prevention of corrosion and “red water”. Journal American Water Works Association 1926, Vol. 15, pp. 598–633.
  • 68. P. SARIN, J.A. CLEMENT, V.L. SNOEYINK, W.M. KRI-VEN: Iron release from corroded, unlined cast-iron pipe. Journal American Water Works Association 2003, Vol. 95, No. 11, pp. 85–96.
  • 69. J.H.G. VREEBURG, P.G. SCHAAP, J.C. van DIJK: Particles in drinking water systems: From source to discolouration. Water Science and Technology, Water Supply 2005, Vol. 4, No. 5–6, pp. 431–438.
  • 70. G. MUTOTI, J.D. DIETZ, S. IMRAN, J. TAYLOR, C.D. COOPER: Development of a novel iron release flux model for distribution systems. Journal American Water Works Association 2007, Vol. 99, No. 1, pp. 102–111.
  • 71. J. NAWROCKI, U. RACZYK-STANISŁAWIAK, J. ŚWIETLIK: Analiza aktualnej sytuacji oraz program działań zmierzających do określenia przyczyn zmian jakości wody uzdatnianej w SUW Gruszczyn i SUW Mosina podczas dystrybucji. Aquanet SA, Poznań 2008 (praca niepublikowana).
  • 72. S.A. IMRAN, J.D. DIETZ, G. MUTOTI, J.S. TAYLOR, A.A. RANDALL, C.D. COOPER: Red water release in drinking water distribution systems. Journal American Water Works Association 2005, Vol. 97, No. 9, pp. 93–100.
  • 73. A. SANDER, B. BERGHULT, E. AHLENBERG, A.E. BROO, E.L. JOHANSSON, T. HEDBERG: Iron corrosion in drinking water distribution systems – surface complexation aspects. Corrosion Science 1997, Vol. 39, No. 1, pp. 77–93.
  • 74. A. SANDER, B. BERGHULT, A.E. BROO, E.L. JOHANSSON, T. HEDBERG: Iron corrosion in drinking water distribution systems – the effect of pH, calcium, and hydrogen carbonate. Corrosion Science 1996, Vol. 38, No. 3, pp. 443–455.
  • 75. Y. ZHANG, M. EDWARDS: Anticipating effects of water quality changes on iron corrosion and red water. Journal of Water Supply: Research and Technology – Aqua 2007, Vol. 56, No. 1, pp. 55–68.
  • 76. M. ŚWIDERSKA-BRÓŻ, M. WOLSKA: Influence of hydraulic parameters on water pollution in a distribution system. Environment Protection Engineering 2007, Vol. 33, No. 4, pp. 5–16.
  • 77. J. LIN, M. ELLAWAY, R. ADRIEN: Study of corrosion material accumulated on the inner wall of steel water pipe. Corrosion Science 2001, Vol. 43, pp. 2065–2081.
  • 78. Ł. RUDNICKA, M. ŚWIDERSKA-BRÓŻ: Skład chemiczny osadów z wrocławskiej sieci wodociągowej. Ochrona Środowiska 1995, vol. 17, nr 3, ss. 63–65.
  • 79. D.A. LYTLE, T.J. SORG, C. FRIETCH: Accumulation of arsenic in drinking water distribution systems. Environmental Science & Technology 2004, Vol. 38, pp. 5365–5372.
  • 80. E.J. KIM, J.E. HERRERA: Characteristics of lead corrosion scales formed during drinking water distribution and their potential influence on the release of lead and other contaminants. Environmental Science & Technology 2010, Vol. 44, No. 16, pp. 6054–6061.
  • 81. M.R. SCHOCK, R.N. HYLAND, M.M. WELCH: Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems. Environmental Science & Technology 2008, Vol. 42, No. 12, pp. 4285–4291.
  • 82. M. McFADDEN, R. GIANI, P. KWAN, S.H. REIBER: Contributions to drinking water lead from galvanized iron corrosion scales. Journal American Water Works Association 2011, Vol. 103, No. 4, pp. 76–89.
  • 83. K. BEREND, T. TROUWBORST: Cement-mortar pipes as a source of aluminium. Journal American Water Works Association 1999, Vol. 91, No. 7, pp. 91–100.
  • 84. L.I. SLY, M.C. HODGKINSON, V. ARUNPAIROJANA: Deposition of manganese in a drinking water distribution system. Applied and Environmental Microbiology 1990, Vol. 56, No. 3, pp. 628–639.
  • 85. J. ŚWIETLIK, U. RACZYK-STANISŁAWIAK, T. LASKOWSKI, J. NAWROCKI: Badania modelowe migracji wybranych pierwiastków z żeliwa i stali do wody na skutek korozji przewodów wodociągowych. Ochrona Środowiska 2011, vol. 33, nr 3, ss. 71–76.
  • 86. R.C. COPELAND, D.A. LYTLE, D.D. DIONYSIOUS: Desorption of arsenic from drinking water distribution system solids. Environmental Monitoring and Assessment 2007, Vol. 127, No. 1–3, pp. 523–535.
  • 87. Z. PAWLAK, T. RAUCKYTE, S. ZAK, P. PRAVEEN: Study of arsenic content in mine groundwater commonly used for human consumption in Utah. Environmental Technology 2008, Vol. 29, No. 2, pp. 217–224.
  • 88. T.L. GERKE, K.G. SCHECKEL, M.R. SCHOCK: Identification and distribution of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products. Environmental Science & Technology 2009, Vol. 43, No. 12, pp. 4412–4418.
  • 89. A.S. HILL, M.J. FRIEDMAN, S.H. REIBER, G.V. KORSHIN, R.L. VALENTINE: Behaviour of trace inorganic contaminants in drinking water distribution systems. Journal American Water Works Association 2010, Vol. 102, No. 7, pp. 107–118.
  • 90. J.E. WAJON, A. HEITZ: The reactions of some sulfur compounds in water supplies in Perth, Australia. Water Science and Technology 1995, Vol. 31, No. 11, pp.87–92.
  • 91. P.D. FRANZMANN, A. HEITZ, L.R. ZAPPIA, J.E. WAJON, K. XANTHIS: The formation of malodorous dimethyloligosulphides in treated groundwater: The role of biofilms and potential precursors. Water Research 2001, Vol. 35, No. 7, pp. 1730–1738.
  • 92. P. SARIN, V.L. SNOEYINK, J. BEBEE, .M. KRIVEN, J.A. CLEMENT: Physico-chemical characteristics of corrosion scales in old iron pipes. Water Research 2001, Vol. 35, No. 12, pp. 2961–2969.
  • 93. H.C.B. HANSEN, C.B. KOCH, H. NANCKE-KROGH, O.K. BORGGAARD, J. SØRENSEN: Abiotic nitrate reduction to ammonium: Key role of green rust. Environmental Science & Technology 1996, Vol. 30, pp. 2053–2056.
  • 94. H.C.B. HANSEN, S. GULDBERG, M. ERBS, C.B. KOCH: Kinetics of nitrate reduction by green rusts – effects of interlayer anion and Fe(II):Fe(III) ratio. Applied Clay Science 2001, Vol. 18, pp. 81–91.
  • 95. D. P. SUMMERS, S. CHANG: Prebiotic ammonia from reduction of nitrite by iron(II) on the early Earth. Nature 1993, Vol. 365, pp. 630–633.
  • 96. Y.-L. TAI, B.A. DEMPSEY: Nitrite reduction with hydrous ferric oxide and Fe(II): Stoichiometry, rate, and mechanism. Water Research 2009, Vol. 43, No. 2, pp. 546–552.
  • 97. S. RAKSHIT, C. J. MATOCHA, G.R. HASZLER: Nitrate reduction in the presence of wustite. Journal of Environmental Quality 2005, Vol. 34, pp. 1286–1292.
  • 98. C. NOUBACTEP: The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 2010, Vol. 36, No. 5, pp. 663–670.
  • 99. A.D. HENDERSON, A.H. DEMOND: Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environmental Engineering Science 2007, Vol. 24, No.4, pp. 401–423.
  • 100. Y.H. HUANG, T.C. ZHANG: Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron system with or without aqueous Fe2+. Water Research 2005, Vol. 39, pp. 1715–1760.
  • 101. C. RUANGCHAINIKOM, C.-H. LIAO, J. ANOTAI, M.-T. LEE: Effects of water characteristics on nitrate reduction by the Feo/CO2 process. Chemosphere 2006, Vol. 63, pp. 335–343.
  • 102. C.P. HUANG, H.W. WANG, P.C. CHIU: Nitrate reduction by metallic iron. Water Research 1998, Vol. 32, pp. 2257–2264.
  • 103. S. CHOE, H.W. LILJESTRAND, J. KHIM: Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry 2004, Vol. 19, pp. 335–342.
  • 104. M.J. ALOWITZ, M.M. SCHERER: Kinetics of nitrate, nitrite and Cr(II) reduction by iron metal. Environmental Science & Technology 2002, Vol. 36, No. 3, pp. 299–306.
  • 105. J. CHOI, B. BATCHELOR: Nitrate reduction by fluoride green rust modified with copper. Chemosphere 2008, Vol. 70, pp. 1108–1116.
  • 106. P.M. HUCK, G.A. GAGNON: Understanding the distribution system as a bioreactor: A framework for managing heterotrophic plate count levels. International Journal of Food Microbiology 2004, Vol. 92, pp. 347–353.
  • 107. J.D. EISNOR, G.A. GAGNON: Impact of secondary disinfection on corrosion in a model water distribution system. Journal Water Supply: Research & Technology – Aqua 2004, Vol. 53, No. 7, pp. 441–452.
  • 108. A.O. Al-JASSER: Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect. Water Research 2007, Vol. 41, pp. 387–396.
  • 109. H. BARIBEAU, M. PRÉVOST, R.DESJARDINS, P. LA-FRANCE: Changes in chlorine and DOX concentrations in distribution systems. Journal American Water Works Association 2001, Vol. 93, No. 12, pp. 102–114.
  • 110. Z. ZHANG, J.E. STOUT, V.L. YU, R. VIDIC: Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems. Water Research 2008, Vol. 42, pp. 129–136.
  • 111. H. BARIBEAU, M. PRÉVOST, R. DESJARDINS, P. LA-FRANCE, D.J. GATES: Chlorite and chlorate ion variability in distribution systems. Journal American Water Works Association 2002, Vol. 94, No. 7, pp. 96–105.
  • 112. J. NAWROCKI, U. RACZYK-STANISŁAWIAK, J. ŚWIETLIK: Badania jakości wody oraz osadów pobranych z wycinków rur z sieci dystrybucyjnej celem określenia procesów zachodzących w sieci w strefie zasilania wodociągu centralnego oraz w strefie zasilania Zakładu Wodociągu Północnego. Poznań 2006 (praca niepublikowana).
  • 113. J. NAWROCKI: Uboczne produkty utleniania i dezynfekcji wody – doświadczenia ostatnich 30 lat. Ochrona Środowiska 2005, vol. 27, nr 4, ss. 3–12.
  • 114. J. NAWROCKI, P. ANDRZEJEWSKI: Nitrosamines and water. Journal of Hazardous Materials 2011, Vol. 189, No. 1–2, pp. 1–18.
  • 115. C.L. CHUN, R.M. HOZALSKY, W.A. ARNOLD: Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite. Environmental Science & Technology 2005, Vol. 39, pp. 8525–8532.
  • 116. C.L. CHUN, R.M. HOZALSKY, W.A. ARNOLD: Degradation of disinfection byproducts by carbonate green rust. Environmental Science & Technology 2007, Vol. 41, pp. 1615–1621.
  • 117. J.-Y. LEE, C.R. PEARSON, R.M. HOZALSKY, W.A. ARNOLD: Degradation of trichloronitromethane by iron water main corrosion products. Water Research 2008, Vol. 42, pp. 2043–2050.
  • 118. X. LIANG, R.P. PHILIP, E.C. BUTLER: Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals. Chemosphere 2009, Vol. 75, pp. 63–69.
  • 119. J.-M.R. GÉNIN, C. RUBY: Anion and cation distributions in Fe(II–III) hydroxysalt green rusts from XRD and Mössbauer analysis (carbonate, chloride, sulphate, ...); the “fougerite” mineral. Solid State Science 2004, Vol. 6, pp. 705–718.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0044-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.