PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Supercapacitors: Alternative Energy Storage Systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Superkondensatory: Alternatywne systemy magazynowania energii
Języki publikacji
EN
Abstrakty
EN
The use of supercapacitors as energy storage systems is evaluated in this work. Supercapacitors are compared with other technologies such as compressed air, pumped hydro, superconductors and flywheels. This paper is focused on medium scale energy storage systems (applied to 100 kW photovoltaic generation plants). The supercapacitor is studied in detail, presenting these device structures, how they can be modeled, the balancing, their useful life and their principal applications. The overview is carried out after a detailed reference selection.
PL
W artykule przedstawiono ocenę użycia superkondensatorów, jako systemów magazynowania energii. Superkondensatory porównano z innymi technologiami, takimi jak sprężone powietrze, hydraulika siłowa, nadprzewodniki i koła zamachowe. Autorzy koncentrują się na systemach magazynowania energii średniej skali (zastosowanych do mocy 100kW stacji baterii fotowoltaicznych). Superkondensator jest opisany szczegółowo, zarówno w aspekcie struktury urządzenia, sposobu modelowania, zrównoważenia, okresu użytkowania jak i głównych zastosowań. Prezentowany przegląd powstał na bazie szczegółowej analizy literatury.
Rocznik
Strony
188--195
Opis fizyczny
Bibliogr. 107 poz., il., rys., tab.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1] S.C. Smith, P.K. Sen, B. Kroposki, “Advancement of energy storage devices and applications in electrical power system”, Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (2008), pp.1 – 8.
  • [2] S. Colel, D. Van Hertem, L. Meeus, R. Belmans, “The influence of renewables and international trade on investment decisions in the grid of the future”, ICREPQ’06 International Conference on Renewable Energies and Power Quality (2006), 8 p.
  • [3] R. Akli, X. Roboam, B. Sareni, A. Jeunesse, “Energy management and sizing of a hybrid locomotive”, IEEE Conf. on Power Electronics and Applications (2007), pp.1-10.
  • [4] R.B. Schainker, “Executive Overview: Energy Storage Options For A Sustainable Energy Future”, IEEE Power Eng. Society General Meeting (2008), vol.2. pp.2309-2314.
  • [5] K. Allen, “CAES: The Underfround Portion”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-104 (1985), no. 4, pp. 809-812.
  • [6] R. Mack, “Something New in Power Technology”, Potentials IEEE,vol. 12 (1993), no.2, pp.40-42.
  • [7] R.B. Schainker, “Executive overview: Energy Storage ptions For a Sustainable Energy Future”, IEEE Power Eginnering Society General Meeting (2004), pp. 2309-2314.
  • [8] R. B. Schainker, M.Nakhamkin, “Compressed-AirEnergy Storage (CAES): Overview, Performance and Cost Data for 25 MW to 220 MW Plants”, IEEE Trans. on Power Apparatus and Systems, vol. PAS-1004 (1985), no 4, pp.791-795.
  • [9] Derk J. Swider, “Compressed Air Energy Storage in an Electricity System with Significant Wind Power Generation”, IEEE Trans. on Energy Conversion, vol. 22 (2007), no. 1, pp. 95-102.
  • [10] S. Lemofouet, A. Rufer, “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximun Efficiency Point Tracking”, Conf. on Power Electronics and Applications - EPE (2005), p.10.
  • [11] S. Lemofouet, A. Rufer, “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximun Efficiency Point Tracking”, IEEE Trans. on Ind. Electronics, vol. 53 (2006), no.4
  • [12] I.A.Ilinca, R.Younès, J.Perron, T.Basbous, “Study of a Hybrid Wind-Diesel System with Compressed Air Energy Storage”, IEEE Conference on Canada Electrical Power, (2007), pp.320-325
  • [13] W. Leonard, M. Grobe, “Sustainable Electrical Energy Supply with Wind and Pumped Storage–A Realistic Long-Term Strategy or Utopia”, IEEE General Meeting of Power Engineering Society(2004), pp.1221-1225.
  • [14] P.F. Ribeiro, at al., ”Energy Storage Systems for Advance Power Applications”, Proc. of the IEEE, vol. 89 (2001), no. 12, pp.1744 – 1756.
  • [15] L. Chen, Y. at al., “Detailed Modeling of Superconducting Magnetic Energy Storage (SMES) System”, IEEE Tran. on Power Delivery, vol. 21 (2006), no. 2.
  • [16] Chung-Shih Hus, Wei-Jen Lee, “Superconducting Magnetic Energy Storage for Power System Applications”, IEEE Trans. on Ind. Applications, vol.29 (1992), no 5, pp.990-996.
  • [17] C.A. Luongo, “Superconducting Storage Systems: An Overview”, IEEE Trans. on Magnetics, vol. 32 (1996), no. 4, pp.2214-2223.
  • [18] R.J. Loyd, at al., ”Design Advances in Superconducting Magnetic Energy Storage for Electric Utility Load Leveling”, IEEE Trans. on Magnetics, vol. MAG-23 (1987), no. 2, pp.1323-1330.
  • [19] W.Buckles, W.V.Hassenzahl, ”Superconducting Magnetic Energy Storage”, IEEE Power Eng. Review, (2000), pp.16-20.
  • [20] M. Steurer, W. Hribernik, “Frequency Response Characteristics of a 100 MJ SMES Coil-Measurements and Model Refinement”, IEEE Transactions on Applied Superconductivity, vol. 15, No 2, June 2005.
  • [21] M. Park, at al., ”Conceptual Design of HTS Magnet for a 5 MJ Class SMES”, IEEE Transactions on Applied Superconductivity, vol. 18, No. 2, June 2008.
  • [22] J. W. Cho, at al., ”Fabrication and Test of a 3MJ SMES Magnet”, IEEE Trans. on Applied Superconductivity, vol. 14 (2004), no 2.
  • [23] T. Ise, M. Kita, A. Taguchi,”A Hybrid Eenrgy Storage with a SMES and Secondary Battery”, IEEE Trans. on Applied Superconductivity, vol. 15, No. 2, June 2005.
  • [24] R. de Andrade, at al., “Voltage sags compensation using a superconducting flywheel energy storage system”, IEEE Trans. Appl. Supercond., vol. 15, Nº. 2, pp. 2265–2268, Jun. 2005.
  • [25] M.L. Lazarewicz, A. Rojas,”Grid Frequency Regulation by Recycling Electrical Energy in Flywheels”, IEEE General Meeting of Power Eng. Society, vol. 2 (2004), pp.2038-2042.
  • [26] M.L. Lazarewicz, J.A. Arseneaux,”Status of Pilot Projects Using Flywheels for Frequency Regulation”, IEEE General Meeting of Power Eng. Society, (2006), p. 3.
  • [27] J. R. Sears, “TEX: The next generation of energy storage technology”, in Proc. 26thAnnu. Int. Telecommun. Energy Conf., (2004), pp. 218–222.
  • [28] W.R. Lachs, D. Sutanto, "Applications of Battery Energy Storage in Power Systems", IEEE Catalogue No. 95 TH8025 (1995), pp. 700-705.
  • [29] J. McDowall, "Nickel-Cadmium Batteries for Energy Storage Applications", in Proc. 1999 IEEE Battery Conference on Applications and Advances (1999), pp. 303-308.
  • [30] J.P. Barton, D.G. Infield, “Energy Storage and Its Use With Intermittent Renewable Energy”, IEEE Trans. on Energy Conversion, vol. 19 (2004), no. 2, pp.441-448.
  • [31] P.C. Symons, “Opportunities for Energy Storage in Stressed Electrical Supply Systems”, IEEE Meeting of Power Engineering Society Winter, vol. 1 (2001), pp. 448-449.
  • [32] A. Burke, “Ultracapacitors: Why, how, and where is the technology”, J. Power Sources, vol. 91 (2000), pp. 37–50.
  • [33] Y. Y. Yao, D. L. Zhang, D. G. Xu, “A Study of Supercapacitor Parameters and Characteristics”, IEEE Conf. on Power System Technology (2006), pp.1 – 4.
  • [34] T. Wei, S. Wang, Z. Qi, “A Supercapacitor Based Ride-Throungh System for Industrial Drive Applications”, IEEE Conf. on Mechatronics and Automation (2007), pp.3833 – 3837
  • [35] J.M.Miller, “Electrical and Thermal Perfornance of the Carbon-carlbon Ultracapacitor under Constant Power Conditions”, IEEE Conf. on Vehicle Power and Propulsion (2007), pp. 559-566.
  • [36] G. Alcicek at al., “Experimental Study of temperature effect on Ultracapacitor ageing”, Conf. on Power Electronics and Applications - EPE (2007), p.7.
  • [37] S. Basu, ”Voltage and Current Ripple Considerations for Improving Lifetime of Ultra-Capacitors used for Energy Buffer Applications at Converter Inputs”, PESC’07 Conf. (2007), pp.1453 – 1457.
  • [38] S. Lu, K.A. Corzine, M. Ferdowsi, “A New Battery/ Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles”, IEEE Trans. on Vehicular Technology, vol. 56 (2007), no. 4.
  • [39] Y.-P. Yang, at al., “An Electric Gearshift With Ultracapacitors for the Power Train of an Electric Vehicle With a Directly Driven Wheel Motor”, IEEE Trans. on Vehicular Technology, vol. 56 (2007), no.5.
  • [40] M. Ortúzar, J. Moreno, J. Dixon, ”Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementacion and Evaluation”, IEEE Trans. on Ind. Electronics., vol. 54 (2007), no.4 .
  • [41] D. Rotenberg, A. Vahidi, I. Kolmanovsky, “Ultracapacitor Assisted Powertrains: Modeling, Control, Sizing, and The Impact on Fuel Economy”, IEEE Conf. on American Control (2008), pp.981 – 987.
  • [42] F. Simjee, P.H. Chou, “Everlast: Long-life, Supercapacitor-operated Wireless Sensor Node”, IEEE Symposium on Low Power Electronics and Design (2006), pp.197-202.
  • [43] F. Simjee, P.H. Chou, “Efficient Charging of Supercapacitors for Extended Liftime of Wireless Sensor Nodes”, IEEE Trans. on Power Electronics, vol. 23 (2003), no. 3.
  • [44] D. McIntosh, P. Mars, "Using a Supercapacitor to Power Wireless Nodes from a Low Power Source such as a 3V Button Battery", 5th Int. Conf. on Information Techn.: New Generations, ITNG '09 (2009), pp. 69-78.
  • [45] L. Shi, M.L. Crow, “Comparison of Ultracapacitor Electric Circuit Models”, IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (2006), pp.1 – 6.
  • [46] T. Wei, X. Qi, Z. Qi, “An Improved Ultracapacitor Equivalent Circuit Model for the Design of Energy Storage Power Systems”, IEEE Conf. on Elec. Machines and Systems (2007), pp.69 – 73.
  • [47] Q. Xin-Chun, Q. Zhi-Ping, L. Haidong, “Asymmetric Hybrid Supercapacitor(AHS)’s Modeling Based on Physical Reasoning”, IEEE Conf. on Electric Utility Deregulation and Restructuring and Power Technologies (2008), pp.2682-2685.
  • [48] Gualous, H. Louahlia-Gualous, R. Gallay, A. Miraoui, "Supercapacitor Thermal Modeling and Characterization in Transient State forIndustrial Applications", IEEE Trans. on Ind. Applications, vol.45 (2009), no.3.
  • [49] B. Cultura II, Z. M. Salameh, “Performance Evaluation of a Supercapacitor Module for Energy Storage Applications”, IEEE General Meeting of Power and Energy Society (2008), pp.1-7.
  • [50] H. Gualous, H. Louahlia-Gualous, “Supercapacitor thermal Characterization in Transient State”, IEEE Conference on Industry Applications (2007), pp.722-729.
  • [51] M.Harfman-Todorovic, M.Chellappan, L. Palma, P. Enjeti, “The Role of Supercapcitors in Designing Fuel Cell Powered Portable Applications”, IEEE Conference on Power Specialists, (2008), pp.2465-2472.
  • [52] M.I. Marei, S.J. Samborsky, S.B. Lambert, M.M.A. Salama, “On the Characterization of Ultracapacitor Banks Used for HEVs”, IEEE Conference on Vehicle Power and Propulsion (2006), pp.1-6
  • [53] P. Srithorn, M. Aten, R. Parashar, “Series Connection of Supercapacitor Modules for Energy Storage”, IEEE Conf. on Power Electronics, Machines and Drives (2006), pp.354-360.
  • [54] R. Maher, “High reliability backup for telecommunications using ultracapacitors”, IEEE Conf. INTELEC’04 (2004), pp.623 – 625.
  • [55] A. Payman, at al., ”Fuel cell characteristic observation to control an electrical multi-source/multi-load hybrid system”, PESC’08 Conf. (2008), pp.1951-1956.
  • [56] J.Hong, S.Jung, P.D.Thang, K.Nam, “Hybridization fuel cell with supercapacitor for FCEV”, APEC’08 Conf. (2008), pp.286-290.
  • [57] H. Liu, Z. Wang, S. Qiao, Y. Liu, “Improvement of engine cold start capability using supercapacitor and lead-acid battery hybrid”, APEC’08 Conf. (2008), pp.668-675.
  • [58] A. Vahidi, W. Greenwell, “A Decentralized Model Predictive Control Approach to Power Management of a Fuel Cell-Ultracapacitor Hybrid”, IEEE Conf. on American Control (2007), pp.5431-5437.
  • [59] D. L. Cheng, M.G. Wismer, “Active Control of Power Sharing in a Battery/Ultracapacitor Hybrid Source”, IEEE Conf. on Ind.l Electronics and Applications (2007), pp. 2913-2918.
  • [60] A. Szumanowski, P. Piorkowski, Y. Chang, "Batteries and Ultracapacitors Set in Hybrid Propulsion System", IEEE Conf. on Power Eng., Energy and Electrical Drives (2007), pp.122-127.
  • [61] J. Liang, Ch. Feng, "Stability Improvement of Micro-grids with Coordinate Control of Fuel Cell and Ultracapacitor," PESC’07 Conf. (2007), pp.2472-2477.
  • [62] A. Vahidi, A. Stefanopoulou, H. Peng, "Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach", IEEE Trans. on Control Systems Technology, vol.14 (2006), no.6, pp.1047- 1057.
  • [63] S.M. Lukic, at al., "Power Management of an Ultracapacitor/ Battery Hybrid Energy Storage System in an HEV", IEEE Conf. on Vehicle Power and Propulsion (2006), pp.1-6.
  • [64] D. Rotenberg, A. Vahidi, I. Kolmanovsky, "Ultracapacitor assisted powertrains: Modeling, control, sizing, and the impact on fuel economy", IEEE Conf. on American Control (2008), pp.981- 987.
  • [65] P. Thounthong, P. Sethakul, S. Rael, B. Davat, "Performance investigation of fuel cell/battery and fuel cell/supercapacitor hybrid sources for electric vehicle applications", IEEE Conf. on Power Electronics, Machines and Drives (2008), pp.455 – 459.
  • [66] S.H Lu, K.A. Corzine, M. Ferdowsi, "A New Battery/ Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles”, IEEE Trans. on Vehicular Technology, vol.56 (2007), no.4, pp.1516 – 1523.
  • [67] Y.-P. Yang, at al., "An Electric Gearshift With Ultracapacitors for the Power Train of an Electric Vehicle With a Directly Driven Wheel Motor," IEEE Trans. on Vehicular Technology, vol. 56 (2007), no. 5.
  • [68] J. Cao, B. Cao, Z. Bai, W. Chen, “Energy-Regenerative Fuzzy Sliding Mode Controller Design for Ultracapacitor-Battery Hybrid Power of Electric Vehicle”, IEEE Conf. on Mechatronics and Automation (2007), pp.1570 – 1575.
  • [69] Y. Baghzouz, R. Hurt, R.F. Boehm, "Evaluation of a Fuel Cell for Powering the Electrical Load of ICE Vehicles", IEEE Conf. on Clean Electrical Power (2007), pp. 74 – 77.
  • [70] M.C. Kisacikoglu, M. Uzunoglu, M. S. Alam, "Fuzzy Logic Control of a Fuel Cell/Battery/Ultra-capacitor Hybrid Vehicular Power System", IEEE Conf. on Vehicle Power and Propulsion (2007), pp.591 – 596.
  • [71] L. Wang, H. Li, "Maximum Fuel Economy-oriented Power Management Design for a Fuel Cell Vehicle Using Battery and Ultracapacitor", APEC’09 Conf. (2009), pp.171 – 178.
  • [72] W. Lajnef, at al., "Quantification of ageing of ultracapacitors during cycling tests with current profile characteristics of hybrid and electric vehicles applications", IEEE Electric Power Applications, vol. 1 (2007), no.5, pp.683 – 689.
  • [73] V.V. Haerri, D. Martinovic, "Supercapacitor Module SAM for Hybrid Busses: an Advanced Energy Storage Specification based on Experiences with the TOHYCO-Rider Bus Project", IEEE Conf. of Industrial Electronics Society (2007), pp.268 – 273.
  • [74] J.A.Hicks, at al., "Ultracapacitor Energy Management and Controller Developments for a Series-Parallel 2-by-2 Hybrid Electric Vehicle", IEEE Conf. on Vehicle Power and Propulsion (2007), pp.328 – 335.
  • [75] M. Ortuzar, J. Moreno, J. Dixon, "Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation", IEEE Trans. on Ind. Electronics, vol.54 (2007), no.4, pp.2147 – 2156.
  • [76] J. Auer, J.M. Miller, "Ultracapacitor-based energy management strategies for eCVT hybrid vehicles", IEEE Conf. on Automotive Electronics (2007), pp.1 – 11..
  • [77] J.M. Miller, M. Everett, J. Auer, "Ultracapacitor Enabled Gatekeeper Energy Management Strategy for Single Mode eCVT Hybrid Vehicle Propulsion", IEEE Conf. on Vehicle Power and Propulsion, (2007).pp. 1-6.
  • [78] J. Bauman, M. Kazerani, "A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles”, IEEE Trans. on Vehicular Technology, vol. 57 (2008), no. 2, pp.760-769.
  • [79] B.-H. Lee, at al., "A Study on Hybrid Energy Storage System for 42V Automotive Power-net", IEEE Vehicle Power and Propulsion Conf. (2006), pp.1-5.
  • [80] Shuai Lu; K.A. Corzine, M. Ferdowsi, "An Unique Ultracapacitor Direct Integration Scheme in Multilevel Motor Drives for Large Vehicle Propulsion", IAS’06 Conf. (2006), pp.2419 – 2426.
  • [81] R. Copparapu, D.S. Zinger, A. Bose, "Energy Storage Analysis of a Fuel Cell Hybrid Vehicle with Constant Force Acceleration Profile", IEEE Power Symposium (2006), pp.43-47.
  • [82] J. Moreno, M.E. Ortuzar, J.W. Dixon,”Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks”, IEEE Trans. on Industrial Electronics, vol.53 (2006), no.2, pp.614-623.
  • [83] M. Amirabadi, S. Farhangi, "Fuzzy Control of a Hybrid Power Source for Fuel Cell Electric Vehicle using Regenerative Braking Ultracapacitor", EPE-PEMC’06 Conf. (2006), pp.1389-1394.
  • [84] A. Abedini, A. Nasiri, "Modeling and Analysis of Hybrid Fuel Cell Systems for Vehicular Applications", IEEE Conf. on Vehicle Power and Propulsion (2006), pp.1 – 6.
  • [85] Y. Wu, H. Gao, "Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles", IEEE Trans. on Vehicular Technology, vol. 55 (2006), no. 6, pp.1748-1755.
  • [86] W. Feng, at al., "Steady-State Optimization of Internal Combustion Engine for Hybrid Electric Vehicles", IEEE Conf. on Vehicular Electronics and Safety (2006), pp.428 – 433.
  • [87] H. Mehrjerdi, J. Ghouili, "Strategies Comparison for Optimization of Multi Objective Function in a Fuel Cell Electrical Vehicle", IEEE Conf. on Electrical and Computer Engineering (2006), pp.1337- 341.
  • [88] M.B. Camara, F. Gustin, H. Gualous, A. Berthon, "Supercapacitors and battery power management for hybrid vehicle applications using multi boost and full bridge converters," EPE’07 Conf. (2007), pp.1 – 9.
  • [89] M. A. Dehaghi, R. Rajaei, A. Ansari, ”A New Buck-and-Boost Ultracapacitor Interface Circuit for the HEVs”, IEEE Conf. on Industrial Electronics and Applications (2009), pp.3382-3387.
  • [90] P. Thounthong, S. Rael, B. Davat,” Analysis of Supercapacitor as Second Source Based on Fuel Cell Power Generation”, IEEE Trans. on Energy Conversion, vol. 24 (2009), no.1, pp.247-255.
  • [91] J.M. Miller, U. Deshpande,T.J. Dougherty, T. Bohn,"Power Electronic Enabled Active Hybrid Energy Storage System and its Economic Viability", IEEE Conference on Applied Power Electronics, 2009, pp.190 – 198.
  • [92] F. Rafik, at al., "Supercapacitors characterization for hybrid vehicle applications", EPE-PEMC’05 Conf. (2006), pp.1-5.
  • [93] Y. Zhong, J. Zhang, G. Li, X. Yuan, ”Mathematical model of new bi-directional DC-AC-DC converter for supercapacitor energy storage system in photovoltaic generation”, IEEE Conf. on Electric Utility Deregulation and Restructuring and Power Technologies (2008), pp. 2686-2690.
  • [94] J. Xue, at al., "Technology Research Of Novel Energy Storage Control For The PV Generation System", Asia-Pacific Power and Energy Engineering Conf. (2009), pp.1-4.
  • [95] Q. Xin-Chun, Q. Zhi-Ping, L. Haidong, “Asymmetric hybrid supercapacitor (AHS)’s modeling based on physical reasoning”, IEEE Conf. on Electric Utility Deregulation and Restructuring and Power Technologies (2008), pp. 2682-2685.
  • [96] E. Glavin, W.G. Hurley, “Ultracapacitor/ battery hybrid for solar energy storage”, IEEE Conf. on Universities Power Engineering (2007), pp.791-795.
  • [97] M.E. Ortuzar, R.E. Carmi, J. W. Dixon, L. Moran,“Voltage-source active power filter based on multilevel converter and ultracapacitor DC link”, IEEE Trans. on Ind. Electronics, vol.53 (2006), no.2, pp.477-485.
  • [98] Tao, J.L. Duarte, M. A. M. Hendrix, “Line-Interactive UPS Using a Fuel Cell as the Primary Source”, IEEE Trans. on Ind. Electronics, vol.55 (2008), no.8, pp.3012-3021.
  • [99] Tao, J.L. Duarte, M. A. M. Hendrix, “A Distributed Fuel Cell Based Generation and Compensation System to Improve Power Quality”, EPE-PEMC’06 Conf. (2006), pp.1-5.
  • [100] X. Zhengping, B. Parkhideh, D. Bhattacharya, "Improving distribution system performance with integrated STATCOM and supercapacitor energy storage system," PESC’08 Conf. (2008), pp.1390 – 1395.
  • [101] B. Parkhideh, S. Bhattacharya, H. Chong, "Integration of supercapacitor with STATCOM for electric arc furnace flicker mitigation", PESC’08 Conf. (2008), pp.2242-2247.
  • [102] P. Srithorn, M. Sumner,L. Yao, P. Ram,”The control of a STATCOM with supercapacitor energy storage for improved power quality”, IEEE SmartGrids for Distribution Conf. (2008), pp.1-4.
  • [103] H. Tao, J.L. Duarte,M.A.M. Hendrix, "A Distributed Fuel Cell Based Generation and Compensation System to Improve Power Quality", EPE-PEMC’06 Conf. (2006), pp.1-5.
  • [104] Y. Li, H. Yu, Bo Su, Y. Shang”, Hybrid Micropower Source for Wireless Sensor Network”, IEEE Sensors Journal, vol.8 (2008), no.6, pp.678-681.
  • [105] V. Martynyuk, “Supercapacitor Data Acquisition Systems”, IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (2007), pp. 24-28.
  • [106] J. Locker, T. Wolfe, “Development of an Ultracapacitor-Based Intermediate Energy Storage System”, IEEE Pulsed Power Conference (2005), pp.1337-1340.
  • [107] Z. Zhang, at al., "Analysis and Design of Bi-directional DC-DC Converter in Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor", APEC’09 Conf. (2009), pp.714-719.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0022-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.