PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inter-Domain Traffic Engineering on Diffserv Networks: A Region-based Approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Kształtownie ruchu międzydomenowego w sieciach typu Diffserv: Podejście bazujące na strefach
Języki publikacji
EN
Abstrakty
EN
In this paper, we are proposing an Inter-domain traffic engineering architecture over Differentiated Services (Diffserv) networks. Our architecture uses an inter-domain Quality of Service (QoS) routing architecture, an inter-domain QoS signaling protocol, and an inter-domain path establishment method. We briefly present the inter-domain QoS routing protocol that is used to find an inter-domain path, which satisfies the requested QoS parameters for a certain connection. As an inter-domain QoS signaling protocol we present the SIBBS-TE protocol, which is used to communicate the explicit path information and the QoS information between Bandwidth Brokers that are responsible for the domains on the QoS path found by the QoS routing protocol. SIBBS-TE is extended from the SIBBS protocol by adding explicit path setup capability, and inter-domain label exchange capability. Inter-domain path setup is achieved by using inter-domain label switched paths (LSP). Path setup is also used to verify that the path found by the inter-domain QoS routing protocol indeed satisfies the requested QoS parameters. We restricted our investigation to interdomain traffic engineering; we do not explore intra-domain issues. Simulation of our inter-domain traffic engineering architecture shows that our approach improves throughput by shifting QoS traffic away from congested links.
PL
W artykule zaproponowano architekturę komunikacji międzydomenowej w sieciach o zróżnicowanych serwisach (Diffserv). W prezentowanej architekturze wykorzystywane jest miedzydomenowe trasowanie wspierające QoS (quality of service), miedzydomenowy protokół sygnalizacji QoS, i miedzydomenowe ustalanie tras. Krótko zaprezentowano protokół wykorzystywany do ustalania tras między domenami, gwarantujący pożądane parametry QoS dla określonego połączenia. Jako protokół sygnalizacyjny wykorzystano SIBBS-TE, pozwalający na przekazywanie szczegółowej informacji o trasie Zarządcom Pasma, odpowiedzialnym za poszczególne domeny na ścieżce ustalonej przez protokół wybierania trasy. SIBBS-TE jest rozwinięciem protokołu SIBB przez dodanie możliwości bezpośredniego ustanowienia trasy i międzydomenowej wymiany etykiet. Badania ograniczono do zarządania ruchem międzydomenowym. Symulacja wykazała, że proponowana metoda poprawia przepustowość przez omijanie zatłoczonych połaczeń.
Rocznik
Strony
137--145
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
  • Mugla University, Technical Education Faculty, 48000 Kotekli, Mugla, Turkey, okumus@mu.edu.tr
Bibliografia
  • [1] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao.Overview and Principles of Internet Traffic Engineering. RFC 3272, May 2002.
  • [2] Peerapon Siripongwutikorn, Sujata Banerjee, and David Tipper.Traffic Engineering in the Internet: A Survey of Load BalancedRouting,http://www2.sis.pitt.edu/peerapon/papers/te.pdf.
  • [3] Anoop Ghanwani, Bilel Jamoussi, Don Fedyk, Peter Ashwood-Smith, Li Li, and Nancy Feldman. Traffic Engineering Standards in IP Networks Using MPLS. IEEE Communications Magazine,December 1999.
  • [4] Ibrahim T. Okumus, Junseok Hwang, Steve J. Chapin, and Haci A. Mantar. Inter-Domain Traffic Engineering on a Bandwidth Broker Supported Diffserv Internet. In Proc. of the Applied Telecommunication Symposium (ATS ’03),Orlando, Fl, 2003.
  • [5] Ibrahim T Okumus. Inter-Domain Traffic Engineering on a Bandwidth Broker Supported Diffserv Internet. Ph.D. Dissertation, Syracuse University, August 2003.
  • [6] R. M. Mortier. Internet Traffic Engineering. Ph.D. Dissertation, University of Cambridge, October 2001.
  • [7] TEQUILA, Traffic Engineering for Quality of Service in the Internet, at Large Scale, http://www.ist-tequila.org/.
  • [8] TEQUILA Project Deliverables, D1.1: Functional Architecture Definition and Top Level Design, pg. 138, http://www.isttequila.org/.
  • [9] M. Boucadair. Qos-enhanced border gateway protocol. Internet-Draft, Jul 2005.
  • [10] X.Masip E.Monteiro S.S´rnchez M.Curado J.Domingo M.Yannuzzi, A.Fonte. A proposal for inter-domain qos routing based on distributed overlay entities and qbgp. Proceedings WoQSR’04, LNCS 3266, Oct 2004.
  • [11] A. Beben. Eq-bgp: an efficient inter-domain qos routing protocol. 20th International Conf. on Advanced Information Networking and Applications, 2006. AINA 2006., 2, Apr 2006.
  • [12] MESCAL Project. http://www.mescal.org.
  • [13] EUQoS Project. http://www.euqos.eu.
  • [14] J. Hwang, J. Altmann, H. Oliver, and A. Suarez. Enabling Dynamic Market-Managed QoS Interconnection in the Next Generation Internet by a Modified BGP Mechanism. The IEEE International Conference on Communications 2002, New York, New York, USA, April 2002.
  • [15] B. Abarbanel and S. Venkatachalam. BGP-4 Support for Traffic Engineering. Internet Draft, work in progress, September 2000.
  • [16] G. Cristallo and C. Jacquenet. An Approach to Inter-domain Traffic Engineering. Proceedings of XVIII World Telecommunications Congress (WTC2002), Paris, 2002.
  • [17] G. Huston. Commentary on Inter-Domain Routing in the Internet, RFC 3221. December 2001.
  • [18] Tracie Monk. Inter-domain Traffic Engineering: Applications in Complex Networks. Ixia, National Fiber Optic Engineers Conference 2002, Dallas, TX, September 2002.
  • [19] Tracie Monk. Inter-domain Traffic Engineering: Principles and Case Examples. The Internet Society’s 12th Annual INET Conference Inet2002, Washington D.C., June 2002.
  • [20] I.T. Okumus, J. Hwang, H.A. Mantar, and S.J. Chapin Inter- Domain LSP Setup Using Bandwidth Management Points. Proc. IEEE Global Communications Conference, Globecomm2001, November 2001.
  • [21] D. Makrakis V. Groza T. Saad, T. Yang. Inter-Domain Adaptive traffic Engineering For IP Differentiated Services MPLS-BasedNetworks. Canadian Conference on Electrical and Computer Engineering IEEE CCECE 2002, May 2002.
  • [22] O. Bonaventure C. Pelsser. Extending RSVP-TE to Support Inter-AS LSPs. 2003Workshop on High Performance Switching and Routing (HPSR 2003), June 2003.
  • [23] JP. Vasseur A. Farrel, A. Ayyangar. Inter-Domain MPLS and GMPLS Traffic Engineering - Resource Reservation Protocol- Traffic Engineering (RSVP-TE) Extensions. RFC5151, February 2008.
  • [24] Hema T. Kaur and Shivkumar Kalyanaraman. A Connectionless Approach to Intra- and Inter-Domain Traffic Engineering. 2nd New York Metro Area Networking Workshop, New York,September 2002.
  • [25] Bruno Quoitin, Cristel Pelsser, Louis Swinnen, Qlivier Bonaventure, and Steve Uhlig. Interdomain Traffic Engineering with BGP. IEEE Comm. Magazine, 41(5):122–128, May 2003.
  • [26] Bruno Quotin, Cristel Pelsser, Olivier Bonaventure, and Steve Uhlig. A performance evaluation of BGP-based traffic engineering. International Journal of Network Management, 15(3):177– 191, May 2005.
  • [27] S. Uhlig, V. Magnin, O. Bonaventure, C. Rapier, and L. Deri. Implications of the Topological Properties of Internet Traffic on Traffic Engineering. In Proc. of the 19 ACM Symposium on Applied Computing, Special Track on Computer Networks, March 2004.
  • [28] S. Uhlig. A Multiple-objectives Evolutionary Perspective to Interdomain Traffic Engineering. International Journal of Computational Intelligence and Applications (IJCIA), special Issue on Nature-Inspired Approaches to Networks and Telecommunications, 5(2):1–16, 2005.
  • [29] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for inter-domain traffic engineering. ACM SIGCOMM Computer Communications Review, October 2003.
  • [30] A. Kock, S. Michaelis, J. Seger, and I. Miloucheva. Interdomain traffic engineering using advanced visual data mining technology. In International IEEE Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN’04), February 2004.
  • [31] R. Mahajan, D. Wetherall, and T. Anderson. Towards Coordinated Interdomain Traffic Engineering . In Third Workshop onHot Topics in Networks HotNets-III, Nov. 2004.
  • [32] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent Route Oscillations In Inter-Domain Routing. Computer Networks (Amsterdam, Netherlands: 1999), 32(1):1–16, 2000.
  • [33] D. Obradovic. Real-time Model and Convergence Time of BGP. Infocom 2002, The 21st Annual Joint Conference of the IEEE Computer and Communications Societies, June 2002.
  • [34] T.G. Griffin and G. Wilfong. An Analysis of BGP Convergence Properties. ACM SIGCOMM’99 Applications, Technologies, Architectures, and Protocols for Computer Communication, August 1999.
  • [35] G. Cristallo and C. Jacquenet. Providing Quality of Service Indication by the BGP-4 Protocol: the QOS-NLRI attribute. Internet Draft, draft-jacquenet-qos-nlri-05.txt, June 2003.
  • [36] Francois Le Faucheur et al. MPLS Support of Differentiated Services. RFC 3270, May 2002.
  • [37] F. Le Faucheur et al. Requirements for support of Diff-Servaware MPLS Traffic Engineering. RFC 3564, July 2003.
  • [38] D. Awduche et al. Requirements for Traffic Engineering Over MPLS. RFC 2702, September 1999.
  • [39] J. Boyle et. al. Applicability Statement for Traffic Engineering with MPLS. RFC3346, August 2002.
  • [40] Ibrahim T. Okumus, Haci A. Mantar, Junseok Hwang, and Steve J. Chapin. Inter-domain qos routing on diffserv networks: a region-based approach. Computer Communications, 28(2):174–188, 2005.
  • [41] Yakov Rekhter. Inter-Domain Routing Protocol (IDRP). Internetworking: Research and Experience, 4, 1993.
  • [42] M. Streenstrup. An Architecture for Inter-Domain Policy Routing. RFC 1478, June 1993.
  • [43] C. Alaettinoglu and A. U. Shankar. The Viewserver Hierarchy for Interdomain Routing: Protocols and Evaluation. IEEE Journal on Selected Areas in Communications, (13(8):1396–1410), October 1995.
  • [44] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differentiated Services Architecture for the Internet, RFC 2638. July 1999.
  • [45] H.A. Mantar, Junseok Hwang, I.T. Okumus, and S.J. Chapin. A scalable model for interbandwidth broker resource reservation and provisioning. IEEE Journal on Selected Areas in Communications, 22(10):2019– 2034, December 2004.
  • [46] QBone Signalling Design Team, http://qbone.internet2.edu/bb/index.shtml.
  • [47] QBone Bandwidth Broker Architecture, http://qbone.internet2.edu/bb/bboutline2.html.
  • [48] E. Rosen et al. MPLS Label Stack Encoding. RFC3032, January 2001.
  • [49] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/.
  • [50] Boston University Representative Internet Topology Generator (BRITE), http://www.cs.bu.edu/brite/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0022-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.