PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SPICE-aided Modelling of Monolithic PWM Switched Voltage Regulators Including the Bipolar Output Stage with Selfheating Taken into Account

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie w programie SPICE monolitycznych regulatorów impulsowych PWM z bipolarnym stopniem wyjściowym przy uwzględnieniu samonagrzewania
Języki publikacji
EN
Abstrakty
EN
The problem of modelling a class of monolithic PWM switched voltage regulators including the bipolar output stage with the use of SPICE is considered in this paper. The STMicroelectronics regulator L296 dedicated for switched-mode power supplies based on the BUCK converter has been chosen for detailed investigations. A new large-signal electrothermal macromodel of this regulator for SPICE is presented. The correctness of the proposed macromodel has been verified experimentally.
PL
W pracy rozważany jest problem modelowania w programie SPICE monolitycznych regulatorów impulsowych realizujących sterowanie PWM i zawierających bipolarny stopień wyjściowy. Szczegółowe rozważania przeprowadzono na przykładzie regulatora L296, produkowanego przez STMicroelectronics i przeznaczonego do pracy w zasilaczach impulsowych z przetwornicą BUCK. Przedstawiono nowy wielkosygnałowy elektrotermiczny makromodel rozważanego regulatora dla programu SPICE. Dokładność zaproponowanego makromodelu zweryfikowano doświadczalnie.
Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Zarębski J., Posobkiewicz K., Monolithic Voltage Regulators for DC-DC Choppers, Elektronizacja, Not-Sigma, n. 12 (2003), 34-26.
  • [2] Designing with the L296 Monolithic Power Switching Regulator. AN244/1288, SGS-Thomson, STMicroelectronics, 1996.
  • [3] Basso Ch. P., Switch-Mode Power Supply SPICE Cookbook. McGraw-Hill, 2001.
  • [4] Reynolds F.H., Measuring and modeling integrated circuit failure rates. Eurocon’82, Copenhagen: Reliability in Electrical and Electronic Components and Systems. North Holland, 1 (1982), 36-45.
  • [5] Mohan N., Power electronics: Computer simulation, analysis and education using PSPICE. Minneapolis, Minnesota, 1992.
  • [6] Bielefeld J., Pelz G., Abel H.B., Zimmer G., Dynamic SPICE-Simulation of the Electrothermal Behavior of SOI MOSFET’s, IEEE Transactions on Electron Devices, 42 (1995), n.11, 1968-1974.
  • [7] Vogelsong R.S., Brzezinski C., Simulation of Thermal Effects in Electrical Systems, IEEE Applied Power Electronics Conference APEC'89, Baltimore (1989), 353-356.
  • [8] Schurack E., Rupp W., Latzel T., Gottwald A., Analysis and Measurement of Nonlinear Effects in Power Amplifiers Caused by Thermal Power Feedback, IEEE International Symposium on Circuits and Systems - ISCAS'92, San Diego (1992), Vol. 2, 758-761.
  • [9] van Petegem W., Wachter D., Sansen W., Electrothermal Simulation of Integrated Circuits, 6th IEEE Semiconductor Thermal and Temperature Measurement Symposium SEMI-THERM, Phoenix (1990), 70-73.
  • [10] Lu K., Halloran P., Brazil T.J., Simple method to simulate diode selfheating using SPICE, Electronics Letters, 28 (1992), n. 17, 1667-1669.
  • [11] Maxim A., Maxim G., Electrothermal SPICE macromodeling of the power bipolar transistor including the avalanche and secondary breakdowns. 24th Annual Conference of the IEEE Industrial Electronics Society, IECON '98, Aachen, (1998), Vol.1, 348-352.
  • [12] Zarębski J., Górecki K., Stepowicz W.J., SPICE-Aided Electrothermal Modelling of Power BJTs, 5th International Seminar on Power Semiconductors ISPS’2000, Prague (2000), 181-185.
  • [13] Stepowicz W.J., Zarębski J., Górecki K., Electrothermal Macromodel of the Power Darlington Transistor, 1997 European Conference on Circuit Theory and Design - ECCTD’97, Budapest (1997), Vol. 1, 191-196.
  • [14] Zarębski J., Górecki K., Bisewski D., A New Electrothermal Model of the Power MOSFET for SPICE, 11-th International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2004, Szczecin (2004), 89 -93.
  • [15] Tounsi P., Dorkel J.M., Dupuy P., Chauffleur X., Fradin J.P., Feybesse A., Chaunut F., New method for electrothermal simulations: HDTMOS in automotive applications, Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (2004), 111-116.
  • [16] Hung Chih-Ju, Roblin P., Akhtar S., Distributed B-spline electrothermal models of thyristors proposed for circuit simulation of power electronics. IEEE Transactions on Electron Devices, 48 (2001), n.2, 353-366.
  • [17] Zarębski J., A New Form of the BJT Model Including Electrothermal Interactions. 11-th European Conference on Circuit Thenory and Design - ECCTD'93, Davos (1993), Vol. 1, 431-436.
  • [18] Stepowicz W. J., D.C. Nonisothermal Output Characteristics of a Bipolar Transistor Including Breakdown. Bulletin of the Polish Academy of Sciences, Technical Sciences, 30 (1982), n. 5-6, 271-278.
  • [19] Stepowicz W.J., D.C. Characteristics of Silicon p-n Junctions at Avalanche Breakdown Including Selfheating, Solid-State Electronics, 22 (1979), n.1, 7-13.
  • [20] Szekely V., Tarnay K., Accurate Algorithm for Temperature Calculation of Devices in Nonlinear-Circuit-Analysis Programs, Electronics Letters, 8 (1972), n.19, 470-472.
  • [21] Zarębski J., Górecki K., The New Form of Electrothermal Model of MA7805 Positive Voltage Regulator, 10th IEEE International Conference on Electronics, Circuits and Systems ICECS 2003, Sharjah (2003), 1105-1108.
  • [22] Zarębski J., Górecki K., The Electrothermal Macromodel of MA7800 Monolithic Positive Voltage Regulators Family. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Wiley, 19 (2006), n.4, 331-343.
  • [23] Zarębski J., Górecki K., Posobkiewicz K., A New Macromodel of L296 Regulator for Spice Including Selfheating. 11-th Int. Conf. Mixed Design of Integrated Circuits and Systems MIXDES 2004, Szczecin (2004), 311-314.
  • [24] Zarębski J., Górecki K., Posobkiewicz K., Modelling of L296 Regulator in SPICE, 6th International Conference on Unconventional Electromechanical and Electrical Systems UEES’04, Alushta (2004), Vol. 2, 617-622.
  • [25] Górecki K., Zarębski J., Posobkiewicz K., The Electrothermal Macromodel of the Monolithic Voltage Regulator LT1073 for SPICE, 10th IEEE International Conference on Electronics, Circuits and Systems ICECS 2003, Sharjah (2003), 1113-1116.
  • [26] Zarębski J., Górecki K., Modelling Electrical and Thermal Interactions in the MC34063A Voltage Regulator, 13th International Conference on Electrical Drives and Power Electronics EDPE 2005, Dubrownik, 2005, E05-71, 81.
  • [27] Zarębski J., Górecki K., A SPICE Electrothermal Model of the Selected Class of Monolithic Switching Regulators, IEEE Transactions on Power Electronics, 23 (2008), n.2, 1023–1026.
  • [28] Web-page AEI Systems www.aeng.com
  • [29] Web-page Magnetico www.magnetico.com
  • [30] Basso C., Write your own generic SPICE power supplies controller models. II. Testing the models. Powerconversion & Intelligent Motion, 23 (1997), n.5, 48-56.
  • [31] Basso C., Write your own generic SPICE power supplies controller models. I. Guidelines. Power conversion & Intelligent Motion, 23 (1997), n.4, 57-62.
  • [32] Lago A, Penalver CM, Cea J., Switched model of control circuits for DC-DC switching converters: application to integrated circuits UC1525 and UC1846, 4th IEEE Workshop on Computers in Power Electronics (1994), 149-56.
  • [33] Raney C.W., An analog macromodel of the SG1525A PWM for use with SPICE 2G.6 simulators, Proceedings of the 35th Midwest Symposium on Circuits and Systems (1992), vol.2, 1546-51.
  • [34] Zarębski J., Górecki K., Posobkiewicz K., The electrothermal model of the switched voltage regulator L296 for SPICE, Kwartalnik Elektroniki i Telekomunikacji, 51 (2005), n 4, 571-585.
  • [35] Zarębski J., Modelling, Simulations and Measurements of Electrothermal Characteristics in Semiconductor Devices and Electronic Circuits. Proc. of Gdynia Maritime Academy, Gdynia 1996.
  • [36] Bagnoli P.E., Casarosa C., Ciampi M., Dallago E., Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal Characterization – Part I: Fundamentals and Theory, IEEE Transactions on Power Electronics, 13 (1998), n. 6, 1208 – 1219.
  • [37] Szekely V., A new evaluation method of thermal transient measurement results, Microelectronic Journal, 28 (1997), 277-292.
  • [38] Górecki K., Zarębski J., Calculations of an Internal Temperature of Semiconductor Devices Controlled by High Frequency Signal, Elektronika, 47 (2006), n. 6, 21 - 24.
  • [39] Górecki K., Zarębski J., A New Method of the Thermal Resistance Measurements of Monolithic Switched Regulators. IMEKO XVIII World Congress, Rio de Janeiro, 2006. (CD-ROM).
  • [40] Posobkiewicz K., Górecki K., Zarębski J., Measurements of the thermal resistance of monolithic voltage regulators, Zeszyty Naukowe Akademii Morskiej w Gdyni, n. 53, (2004), 105-112.
  • [41] L296, L296P. High Current Switching Regulators. SGS-Thomson, STMicroelectronics, 2002.
  • [42] Zarębski J., Górecki K., Parameters Estimation of the D.C. Electrothermal Model of the Bipolar Transistor, International Journal of Numerical Modelling Electronic Networks, Devices and Fields, 15 (2002), n. 2, 181-194.
  • [43] Górecki K., Zarębski J., Parameters Estimation of Thermal Model of Semiconductor Devices, Kwartalnik Elektroniki i Telekomunikacji, (2006), n. 3, 347-360.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0021-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.