PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The multiscalar control of induction motor with the sliding mode controllers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Multiskalarny układ sterowania silnikiem indukcyjnym z wykorzystaniem regulatorów ślizgowych
Języki publikacji
EN
Abstrakty
EN
The control structure of induction motor is proposed in this paper. The structure of multiscalar control with conventional PI - controllers is well known in literature. The sliding mode multiscalar control (SMMC) conception is presented in this paper. The induction motor is fed by voltage source inverter. Comparison between two multiscalar control method is showed. The flux and the rotor speed is estimated in the Krzeminski's Speed Observer. The research of proposed sensorless SMMC are showed in simulations and experimental results.
PL
W referacie zaproponowano strukturę układu regulacji z regulatorami ślizgowymi. Maszyna indukcyjna zasilana jest z falownika napięcia. Porównano właściwości klasycznego multiskalarnego układu regulacji z otrzymaną nową strukturą z regulatorami ślizgowymi (SMMC). W referacie przedstawiono wyniki badań symulacyjnych i eksperymentalnych.
Rocznik
Strony
144--149
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Krzeminski Z.: Nonlinear control of induction motor. Proceedings of the 10th IFAC World Congress, Munich 1987.
  • [2] Boychuk, L. M. An inverse method of the structural synthesis of automatic control nonlinear systems, Automation, Kiev: Naukova Dumka, No.6, pp. 7, 1966.
  • [3] Yurkevich V. D.: Design of nonlinear control systems with the highest derivative in feedback, Copyright © 2004 by World Scientific Publishing Co. Pte. Ltd.
  • [4] Bellini A. and others: Linearized modelof induction motor drives via nonlinear state feedback decoupling. 4th European Conf. on Power Electronics and Appl., Firenze 1991.
  • [5] Krzemiński Z.: A new speed observer for control system of induction motor. IEEE Int. Conference on Power Electronics and Drive Systems, PESC’99, Hong Kong, 1999.
  • [6] Wlas, M.; Krzeminski, Z.; Guzinski, J.; Abu-Rub, H.; Toliyat, H.A.: Artificial-Neural-Network-Based Sensorless Nonlinear Control of Induction Motors, IEEE Transactions on Energy Conversion vol 20, 2005
  • [7] Abu-Rub, H.; Guzinski, J.; Krzeminski, Z.; Toliyat, H.A.: Speed observer system for advanced sensorless control of induction motor, IEEE Transactions on Energy Conversion vol 18, 2003
  • [8] Abu-Rub, H., Guzinski, J., Krzeminski, Z., Toliyat, H.A.: Predictive current control of voltage-source inverters, IEEE Transactions on Industrial Electronics vol. 51, 2004.
  • [9] Guldner J., Utkin V.I.: The chattering problem in sliding mode systems. 2000.
  • [10] Etien E., Cauet S., Rambault L., Champenois G.: Control of an Induction Motor Using Sliding Mode Linearization. Int. J. Appl. Math. Comput. Sci., 2002, No.4, pp. 523-531.
  • [11] Guzelkaya M., Eksin I., Tokat S.: Fuzzy Self-Tuning Mechanizm for the Sliding Surface Slope in Fuzzy Sliding Mode Controllers. Journal of Electrical Engineering vol. 3, 2003.
  • [12] Ha Q.P., Rye D.C., Durrant-Whyte H.F.: Robust Sliding Mode Control with Application. Int. J. Control, Vol. 72, No.12, 1999, pp. 1087-1096.
  • [13] Jezernik K.: Robust Chattering Free Sliding Mode Control of Servo Drives. 1996.
  • [14] Loukianov A.G.: Robust Block Decomposition Sliding Mode Control Design. Mathematical Problems in Engineering, Vol. 8, 2002, pp. 349-356.
  • [15] Perruquetti W., Richard J.P., Borne P.: A Generalized Regular Form for Multivariable Sliding Mode Control. Mathematical Problems in Engineering, Vol. 7, 2001, pp. 15-27.
  • [16] Barazane L., Sellami Y., Ouiguini R., Boucherit M.S.: An approach to cascade sliding mode control of an induction motor based on robust neutral network controllers. CISTEMA’2003.
  • [17] Bhatti A.I., Spurgeon S.K., Dorey R., Edwards C.: Sliding mode configurations for automotive engine control. Int. J. Adapt. Control Signal Process. 13, 1999, pp. 49-69.
  • [18] Slotine J.J., Li W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, NJ, 1991.
  • [19] Utkin V.I., Chang H.: Sliding Mode Control on Electro-Mechanical Systems Mathematical Problems in Engineering, Vol. 8, 2002.
  • [20] Utkin V.I., Guldener J., Shi J.: Sliding Mode Control in Electromechanical Systems, Copyright © Taylor&Francis 1999.
  • [21] Krzemiński Z., Bogalecka E., Kempny Z.: Compensation of dynamic gear ratio in drive with asynchronous motor, PEMC 1996.
  • [22] Krzemiński Z. Adamowicz M.: Novel Adaptive Flux Observer for Wide Speed Range Sensorless Control of Induction Motor, EPE 2007.
  • [23] Zhonghong S., Yigao D., Xinyu W., Yafeng W.: Research on the Steady Precision of Sliding Mode Control of a Class of Nonlinear Systems, Intelligent Control and Automation, WCICA 2006.
  • [24] Kyoung Joo K., Jin Bae P., Yoon Ho Ch.: Chattering Free Sliding Mode Control, IEEE Conference on Cybernetics and Intelligent Systems 2004.
  • [25] Tao W., Shao-Cheng T.: Fuzzy sliding mode control for nonlinear systems, Proceedings of International Conference on Machine Learning and Cybernetics, 2004.
  • [26] Wlas, M.; Krzeminski, Z.; Toliyat, H.A.: Artificial-Neural-Network-Based Sensorless Nonlinear Control of Induction Motors, IEEE On Industrial Transaction on Electronics, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0020-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.