Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Propagacja fali elektromagnetycznej wewnątrz konstrukcji budowlanych
Języki publikacji
Abstrakty
The paper presents the influence of three types of construction materials (bricks, prefabricated units, passive building) used in building engineering on the electromagnetic wave propagation. Analysis of both the propagation phenomena and the computational results can make it possible to subsequently plan the placements of wireless network transmitters used, among others, in cellular telephony, the internet, networks equipped with modems, routers and other similar devices. The purpose of the research is to optimize the transmitter placement process thus improving the quality of modern communication.
W publikacji przedstawiono wpływ materiałów budowlanych stosowanych obecnie w trzech rodzajach budownictwa (cegła, wielka płyta, budownictwo pasywne) na propagację pola elektromagnetycznego. Analiza wyników obliczeń, jak również występujących zjawisk umożliwia późniejsze planowanie rozmieszczania nadajników sieci bezprzewodowej m.in. sieci komórkowej, Internetu, zawierających modemy, routery i innego rodzaju urządzenia. Celem badań jest optymalizacja rozstawienia nadajników, która wpłynie na polepszenie jakości komunikacji.
Wydawca
Czasopismo
Rocznik
Tom
Strony
44--49
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
autor
autor
- Politechnika Białostocka, Katedra Elektrotechniki Teoretycznej i Metrologii, ul. Wiejska 45A, 15-351 Białystok, a.choroszucho@we.pb.edu.pl
Bibliografia
- [1] Cuinas I, Sanchez M.G., Permittivity and Conductivity Measurements of Building Materials at 5.8GHz and 41.5GHz, Wireless Personal Communications, 20 (2002), 93-100.
- [2] Stavrou S., Saunders S.R., Review of constitutive parameters of building material, The Institute of Electrical Engineers. Printed and Published by The IEEE, 2002, 211-215.
- [3] Weiping Q, Shenggao D., Yerong Z., FDTD Calculation of the Effects of Reinforced Concrete Wall on Short Path Propagation of UWB Pulse, IEEE Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, 2005.
- [4] Antonini G., Orlandi A, D’elia S., Shielding Effects of Reinforced Concrete Structures to Electromagnetic Fields due to GSM and UMTS Systems, IEEE Transactions on Magnetic, 39 (2003), No.3, 1582-1585.
- [5] Richalot E., Bonilla M., Wong M., Fouad-Hanna V., Baudrand H., Wiart J., Electromagnetic Propagation into Reinforced-Concrete Walls, IEEE Transactions on Microwave Theory and Techniques, 48 (2000), No.5, 357-366.
- [6] Holloway Ch.L., Perini P.L., DeLyser R.R., Allen K.C., Analysis of Composite Walls and Their Effects on Short-Path Propagation Modeling, IEEE Transactions on Vehicular Technology, 46 (1997), No.3, 730-738.
- [7] Dalke R.A., Holloway Ch.L., McKenna P., Johannson M., Ali A.S., Effects of Reinforced Concrete Structures on RF Communications, IEEE Transactions on Electromagnetic Compatibility, 42 (2000), No.4, 486-496.
- [8] Tan S.Y., Tan Y., Tan H.S., Multipath Delay Measurements and Modeling for Interfloor Wireless Communications, IEEE Transactions on Vehicular Technology, 49 (2000), No.4, 1334-1341.
- [9] Morawski T., Gwarek T., Pola i fale elektromagnetyczne, WNT, Warszawa 1998.
- [10] Yee K.S., Numerical Solution of Initial Boundary Value Problems Maxwell’s Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation, vol. AP-14, No 3, pp. 302 – 307, 1966.
- [11] Taflove A., Hagness S.C., Computational Electrodynamics, The Finite – Difference Time – Domain Method. Boston, Artech House, Inc. 2000.
- [12] Sikora R., Teoria pola elektromagnetycznego, WNT, Warszawa, 1997.
- [13] Taflove A., Brodwin M.E., Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equation, IEEE Trans. Microwave Theory Tech., MTT-23, 4, pp. 623-630, Aug. 1975.
- [14] Mur G., Absorbing Boundary Conditions for the Finite – Difference Approximation of the Time – Domain Electromagnetic Field Equations. IEEE Trans. on Biomed. Eng., Vol. BME-34, No. 2, pp. 148-157, 1987.
- [15] QuickWave – 3D v. 1.8, Warszawa, 1997.
- [16] Landron O., Feuerstein M.J., Rappaport S., A Comparison of Theoretical and Empirical Reflection Coefficients for Typical Exterior Wall Surfaces in a Mobile Radio Environment, IEEE Transactions on Antennas and Propagation, 44 (1996), No.3, 341-351.
- [17] Lovell M.C., Avery A.J., Vernon M.E., Physical properties of materials, Van Nostrand Reinhold, New York, 1976, Chap.8, 153-185.
- [18] Shimabukuro F.I., Yeh C., Attenuation Measurement of Very Low Loss Dielectric Waveguides by the Cavity Resonator Method Applicable in the Millimeter/Submillimeter Wavelength Range, IEEE Transactions on Microwave Theory and Techniques, 36 (1988), No.7, 1160-1166.
- [19] Marchal E., Factors Affecting The Location of the Peak Above Tg in TSD Currents in Polystyrene, IEEE Transactions on Electrical Insulation, EI-21 (1986), No.3, 323-326
- [20] Jordan A., Maple C., The modeling of the FDTD method based on graph theory, COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 23 (2004), No 3, 694-700.
- [21] Jordan A., Theoretical Background of Parallel Electromagnetic Field Computations, International Journal of Applied Electromagnetics and Mechanics, IOS Press, 2002, ISEM – Tokyo, 393-398.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0013-0009