PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of enzymes for bioremediation. Part 1. Oxidoreductases

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioremediation is considered the use of biological agents to transform pollutants into innocuous products. The main biological agents of bioremediation are microorganisms and plants (phytoremediation) and their enzymes. A large number of bacteria and fungi are able to transform, partly or completely, many xenobiotic organic compounds. The use of microorganisms to remediate a polluted environment may, however, present some limitations, such as adsorption of microbial cells on solid particles, diffusion constraints, competition effects by indigenous microorganisms, and inhibition by toxic compounds. A possible strategy for overcoming these drawbacks is the use of enzymes, which could be obtained, in large quantities from microbial populations as well as from plants. As it is well known, enzymes can be active outside the parent cells. The extracellular activity of enzymes is expected to be increasingly exploited in future bioremediation technologies. To prevent losses of enzymatic activity under severe field condition, many investigation have been focused on developing methods to stabilize enzymes, preferably by immobilization on solid supports or by gel coating. The use of enzymes naturally stabilized in plant tissues also has been investigated. Basically, two classes of enzymes are examined for bioremediation purposes, i.e., oxidoreductases and hydrolases, including enzymes highly efficient in the transformation of several pollutants. The feasibility of enzymatic treatment has been demonstrated mainly in laboratory studies but some attempts at field scale were done as well. For example, several fungal phenoloxidases effectively oxidised xenobiotic phenols and anilines through polymerization or binding to humus. Tyrosinase was used as a free enzyme to dephenolize different wastewater samples. Both free and immobilized laccase and peroxidase were applied to detoxify soils polluted by 2,4 dichlorophenols. Further studies are necessary to identify additional enzymes that can be able to transform the increasing number of chemicals polluting the environment.
Czasopismo
Rocznik
Strony
259--265
Opis fizyczny
Bibliogr. 41 poz., tab.
Twórcy
  • Akademia Techniczno-Rolnicza, Bydgoszcz
Bibliografia
  • 1. Alexander M. (1999): Biodegradation and bioremediation. San Diego, Academic Press,
  • 2. Altov S.i;.. Bonadonna-Aparo L., Klibanov A.M. (1984): Dephenolization of industrial wastewaters catalysed by polyphenol oxidase. Biotechnol. Pio-eng., 26, 599-603.
  • 3. Barriault D., Durant J., Maaroufi H., Eltis L.D., Sylvestre M. (1998): Degradation of polychlorinated biphenyl metabolites by naphthalene-catabolizing enzymes. Appl. Environ. Microbiol., 64, 4637-4642.
  • 4. Beilen J.B., Li Z. (2002): Enzyme technology: an overview. Curr. Opin. Biotechnol., 13, 338-344.
  • 5. Bollag J.M., Mertz T., Otjen L. (1994): Role of microorganisms in soil bioremediation. In: [ed.] T.A. Andersen, J.R. Coats, Bioremediation through rhizosphere technology. ACS Symp. Series, 563, American Chemical Society, Washington, p.l-10.
  • 6. Chauhan S., Barbieri R, Wood T.K. (1998): Oxidation of trichloroethylene, l, l -dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol., 64, 3023-3024.
  • 7. Cooper V.A., Nicell J.A. (1996): Removal of phenols from a foundry wastewater using horseradish per-oxidase. Water Res., 30, 954-964.
  • 8. ec J., Bollag J-M. (2001): Use of Enzymes in Bioremediation. In: [ed.] Hali J.C., Hoagland R. E., Zablatowicz R. M., Pesticide Biotransformation in Plants and Microorganisms, ACS Symposium Series 777, American Chemical Society, Washington, DC, pp. 182-193.
  • 9. Dick W.A., Tabatabai M.A. (1992): Significance and potential uses of soil enzymes. In: [ed.] F.B. Met-ting Jr., Soil microbial ecology: Application in agriculture and environmental management. Dekker, New York, p.95-127.
  • 10. Dick W.A., Tabatabai M.A. (1999): Use of Im-mobilized Enzymes for Bioremediation. In: [ed.] Dick W.A. Bioremediation of Contaminated Soils, Agronomy Monograph, 37, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Segoe Rd., Madison, WI 53711 USA, pp.315-338.
  • 11. Duran N., Rosa M.A., D'Annibale A., Gianfreda L. (2002): Application of laccases and tyrtosinases (phenolooxidases) immobilized on different support: a review. Enzyme Microb. Technol., 31, 907-931.
  • 12. Fetzer S., Lingens F. (1994): Bacterial dehalogenases: Biochemistry, genetics, and biotechnological application. Microbial Rev. 58, 641-685.
  • 13. Gerday C., Aittaleb M., Bentahir M., Chessa J.P., Claverie P., Collins T. (2000): Cold- adopted enzymes: from fundamentals to biotechnology. Trends Biotechnol., 18, 103-107.
  • 14. Gianfreda L., Scarfi M.R. (1991): Enzyme stabilization: state of the art. Molec. Celi. Biochem, 100, 97-128.
  • 15. Gianfreda L., Bollag J-M. (1996): Influence of natural and anthropogenic factors on enzyme activity in soils. In: [ed.] G. Stozky, J.M. Bollag. Soil Biochemistry, 9, Marcel Dekker, New York, p. 123-194.
  • 16. Gianfreda L., Xu X.F., Bollag J-M. (1999): Laccases: a usefulnes group of oxidoreductive enzymes. Bioremediation, 3, 1-25.
  • 17. Gianfreda L., Bollag J-M (2002): Isolated Enzymes for the Bioremediation and Detoxyfication of Organic Pollutants. In: [ed.] Burns R.G., Dick R.P., Enzymes in the Environment, Marcel Dekker, Inc., New York, Basel, pp.495-538.
  • 18. Gianfreda L., Rao M.A. (2004): Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb. Technol., 35, 339-354.
  • 19. Haddock J.D., Gibson D.T. (1995): Purification and characterisation of the oxygenase component of biphenyl 2.3-dioxygenase from Pseudomonas sp. strain LB400. J. Bacteriol., 177, 5834-5839.
  • 20. Haki G.D., Rakshit S.K. (2003): Developments in industrially important thermostabile enzymes: a review. Biores Technol., 89, 17-34.
  • 21. Hammel H.E. (1989): Organopollutant degradation by ligninolytic fungi. Enzyme Microb. Technol., 11, 776-787.
  • 22. Hassall K. A (1990): Principles of pesticide metabolism. In: The Biochemistry and Uses of Pesticides. Structure, Metabolism, Mode of Action and Uses in Crop Protection. VCH Publishers Inc. New York , NY, USA, pp.57-80.
  • 23. Hatakka A. (1994): Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbial. Rev., 13, 125-135.
  • 24. Klibanov A.M., Alberti B.N., Morris E.D., Felshin L.M. (1980): Enzymatic removal of toxic phenols and anilines from waste waters. J. Appl. Biochem., 2,414-421.
  • 25. Klibanov A.M. (1982): Enzymatic removal of hazardous pollutants from industrial aqueous effluents. Enzyme Eng., 6, 319-323.
  • 26. Leonowicz A., Sarkar J.M., Bollag J.M. (1988): Improvement in stability of an immobilized fungal laccase. Appl. Microbial. Technol., 29, 129-135.
  • 27. Mars A.E., Kingma J., Kaschabek S.R., Janssen D.B. (1999): Conversion of 3-chlorocatechol by various catechol 2,3 dioxygenases and sequence analysis of the chlorocatechol dioxygenase dioxygenase region of Pseudomonas patida GJ31. J. Bacterial., 181, 1309-1318.
  • 28. Mayer A.M. (1987): Polyphenol oxidases in plants-recent progress. Phytochem., 26, 11-20.
  • 29. McGuirl M.A., Dooley D.M. (1999): Cooper containing oxidases. Curr. Opin. Chem. Biol., 3, 138-144.
  • 30. van der Meer J.R., de Vos W.W., Harayama S., Zehnder A.J.B. (1992): Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbial Rev., 56-64.
  • 31. Nannipieri P, Gianfreda L. 1998. Kinetics of Enzymes Reactions in Soil Environment. In: [ed.] Huang J., Senesi N., Buffle J., Structure and Surface Reaction of Soil Particle, John Wiley & Sons Ltd., pp. 449-478.
  • 32. Nicell J.A., Bewtra J.K., Biswas N., Taylor K.E. (1993): Reactor development for peroxidase catalyzed polymerization and precipitation of phenols from wastewater. Water Res., 27, 1629-1639.
  • 33. Rothschild L.J., Mancinelli R.L. (2001): Life in extreme environments. Nature 409, 1092-1101.
  • 34. Ruggiero P., Sarkar J.M., Bollag J.M. (1989): Detoxification of 2,4 dichlorophenol by a laccase immobilzed on soil or clay. Soil Sci., 147, 361-370.
  • 35. Sanchez-Ferrer A., Rodriguez J.N., Garcia-Canovas F., Garcia-Carmona F. (1995). Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta 1247, 1-11.
  • 36. Sawahata T., Neal R.A. (1982): Horseradish peroxidase-mediated oxidation of phenol. Biochim. Biophys. Res. Commun., 109, 988-994.
  • 37. Tatsumi K., Wada S., Ichikawa H. (1996): Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnol. Bioeng., 51, 126-130.
  • 38. Torres E., Bustos-Jaimes L, Le Borgne S. (2003): Potential use of oxidative enzymes for detoxification of organic pollutants. Appl. Catal. B: Environ., 46, 1-15.
  • 39. Trevors J.T., Kuikman P., van Elsas J.D. (1994): Release of bacteria into soil: cell numbers and distribution. J. Microbial Methods, 19, 247-259.
  • 40. Wu Y., Taylor K.E., Biswar N., Bewtra J.K. (1998): A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenols. Emyme Microb. Technol., 22, 315-322.
  • 41. Xu F., Kulys J.J., Duke K., Li K.C., Krikstopaitis K., Deussen H.J.W. (2000): Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl. Environ. Microbiol., 66, 2052-2056.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOA-0013-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.