PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of phosphates in improvement of surface layer on titanium alloys for medical applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Protective properties of the oxide surface layer on titanium and its alloys can be tailored to desired applications by anodizing parameters. Electrochemical oxidation in various electrolytes as well as different scan rates during the very first seconds of polarization may improve the morphology, structure and chemical composition of oxide layers to enhance the use of titanium materials in electronics, photovoltaic and medicine. Phosphate electrolytes play specific role in the anodizing process. Besides forming compact barrier layer, they enable also to form oxide porous and nanostructural layers enriched in phosphates, which enhance their bioactivity. In the paper the influence of phosphate ions on formation oxide layers: porous (Fig. 1, 2), gel-like (Fig. 3) and nanostructural on titanium (Fig. 6) and its alloys Ti6Al4V and Ti6Al7Nb (Fig. 8) in phosphoric acid solutions was presented. Basing on morphological and chemical composition analysis (SEM, XPS) and the electrochemical tests (Fig. 2, 4, 5, 9) the effect of electrolyte concentration on the protective character and the corrosion potential of the examined layers was revealed. The enrichment of surface oxide layers with phosphates and fluorides, enhancing their bioactivity, was observed. Studies to use Ti/TiO2 systems as the platform of the electrochemical biosensors to detect H2O2 and glucose proved the opportunity to use this nanotubular material as a platform for 2nd generation biosensors.
PL
Ochronne własności warstw tlenkowych na materiałach tytanowych można kształtować pod kątem określonych zastosowań przez zmianę parametrów procesu anodowego. Metodą utleniania elektrochemicznego są formowane warstwy o zróżnicowanej morfologii, strukturze, składzie chemicznym i przewodności elektrycznej, co rozszerza spektrum zastosowań tych materiałów w elektronice, fotowoltaice oraz medycynie. Elektrolity fosforanowe pełnią szczególną rolę w procesach anodowania. Poza formowaniem zwartej warstwy ochronnej umożliwiają także formowanie tlenkowych warstw porowatych i nanostrukturalnych, wzbogaconych w fosforany nadające tym warstwom cechy bioaktywności. W pracy przedstawiono wpływ jonów fosforanowych na formowanie warstw tlenkowych: porowatych (rys. 1, 2), żelopodobnych (rys. 3) i nanostrukturalnych na tytanie (rys. 6) i jego stopach: Ti6Al4V i Ti6Al7Nb (rys. 8) w roztworach kwasu fosforowego. Na podstawie badań morfologicznych i składu chemicznego (SEM, XPS) oraz testów elektrochemicznych (rys. 2, 4, 5, 9) wykazano wpływ stężenia elektrolitu na ochronny charakter tych warstw oraz ich potencjał korozyjny. Zaobserwowano wzbogacenie anodowych tlenków w fosforany i fluorki, podnoszące ich bioaktywność w sztucznym płynie fizjologicznym (SBF). Podjęto także próby określenia przydatności układów Ti/TiO2 w charakterze podłoża dla bioczujników elektrochemicznych do wykrywania obecności H2O2 i glukozy.
Rocznik
Strony
485--489
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Trasatti S., Lodi G.: Electrodes of conductive metallic oxides. ed. S. Trasatti, Chapt. B, Elsevier Amsterdam (1981) 521.
  • [2] Luckey H., Kubli F.: Titanium alloys in surgical implants. ASTM 796 (1981).
  • [3] Marciniak J.: Biomaterials. Technical University of Upper Silesia Press (2002) ISBN 83-7335-031-4.
  • [4] Chrzanowski W., Szewczenko J., Tyrlik-Held J., Marciniak J., Zak J.: Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy. J Mater Proces Techn 162-163 (2005) 163÷168.
  • [5] Hanawa T., Mamoru O.: Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12 (1991) 767.
  • [6] De Assis S. L., Wolynec S., Costa I.: Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta 51 (2006) 1815÷1819.
  • [7] Krasicka-Cydzik E., Kowalski K., Głazowska I.: Bioactive surface layers formed electrochemically on titanium materials in phosphoric acid solution. 3rd Central Eur Conf. Krakow (2006) eds. K. Szaciłowski p. 50.
  • [8] Sul Y. T.: The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24 (2003) 3893÷3907.
  • [9] Bylica J., Sieniawski J.: Tytan i jego stopy. PWN, Warszawa (1985).
  • [10] Corbridge D. E. C.: Phosphorus. the 5th Edit. Elsevier, Amsterdam-Lausanne- New York-Oxford-Shannon-Tokyo (1995).
  • [11] Krasicka-Cydzik E.: Formation of thin anodic layers on titanium and its implant alloys. University of Zielona Gora Press, Zielona Góra (2003) ISBN: 83-89321-80-7.
  • [12] Krasicka-Cydzik E.: Electrochemical and Corrosion properties of Ti6Al4V in phosphoric acid solutions. Biomater. Eng. 7-8 (1999) 26÷32.
  • [13] Krasicka-Cydzik E.: Electrochemical aspects of tailoring anodic layer properties on titanium alloys. Corrosion Protection XLII (1999) 48÷52.
  • [14] Krasicka-Cydzik E.: Influence of phosphoric acid on the rate of titanium alloys anodizing. Arch. BMiAut., Poznań 20 (2000) 155.
  • [15] Krasicka-Cydzik E.: Impedance properties of anodic films formed in H3PO4 on selected titanium alloys. Mat. Eng. 7 (2) (2000) 5-11.
  • [16] Krasicka-Cydzik E.: Effect of polarization parameters on the selected properties of surface layer on Ti6Al4V alloy anodized in phosphoric acid solutions. Arch. TM i Aut. 21 (1) (2001) 171÷178.
  • [17] Krasicka-Cydzik E.: Impedance examination of titanium and its selected implant alloys. Biomater. Eng. 14 (2001) 27÷31.
  • [18] Krasicka-Cydzik E.: Formation and properties of anodic film on titanium in phosphoric acid solutions. Mater. Eng. IX (2) (2002) 9.
  • [19] Krasicka-Cydzik E.: Passivity of implant titanium alloys in phosphoric acid solution of high concentration. Corrosion Protection (2002) 282.
  • [20] Krasicka-Cydzik E.: Surface modification of phosphoric acid anodized implant titanium alloys. 7th World Biom. 2004, ISBN: 1-877040-19-3 1106
  • [21] Krasicka-Cydzik E., Głazowska I., Michalski M.: Bioactivity of implant titanium alloys after anodizing in H3PO4. Inż. Biomat. (2004) 38÷42.
  • [22] Krasicka-Cydzik E.: Method of anodic coating formation on titanium and its alloys. Polish Patent RP 185176, University of Technology Zielona Gora, LfC Ltd. (2003).
  • [23] Głazowska I., Krasicka-Cydzik E.: Impedance characteristics of anodized titanium in vitro. Biomater. Eng. (2005) 8, 47-53, 127÷130.
  • [24] Krasicka-Cydzik E., Głazowska I., Michalski M.: Microscopic examination of anodic layers on implant titanium alloys after immersion in SBF solution. Biomater. Eng. 47-53 (2005) 130÷133.
  • [25] Krasicka-Cydzik E., Kowalski K., Głazowska I.: Electrochemical formation of bioactive surface layer on titanium. Journal of Achievements in Materials and Manufacturing Engineering 18 (1-2) (2006) 147÷150.
  • [26] Krasicka-Cydzik E., Głazowska I.: Influence of alloying elements on behawior of anodic layer in phosphoric acid solution. Biomater. Eng. 67-68 (2007) 29÷31.
  • [27] Krasicka-Cydzik E., Głazowska I., Michalski M.: Hydroxyapatite coatings on titanium and its alloys anodised in H3PO4. EUROMAT 2005, European Congress on Advanced Materials and Processes. Prague, Czech Rep, (2005) 1.
  • [28] Krasicka-Cydzik E.: Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions. Corrosion Science 46 (2004) 2487÷2502.
  • [29] Krasicka-Cydzik E.: Studies on transition of titanium from active into passive state in phosphoric acid solutions. [In:] Passivation of metals and semiconductors, and properties of thin oxide layers. ed. P. Marcus, V. Maurice. Amsterdam: Elsevier (2006) 193÷198.
  • [30] Krasicka-Cydzik E.: Method of phosphate layer formation on titanium and its alloys. Polish Patent, PL 203453, Univ. Zielona Gora (2009).
  • [31] Grimes C. A., Mor G. K.: TiO2 Nanotube Arrays. Springer (2009) ISBN 978-1-4419-0067-8.
  • [32] Bavykin D. V., Walsh F. C.: Titanate and titania nanotubes. RSC (2010).
  • [33] Ghicov A., Tsuchiya H., Macak J. M., Schmuki P.: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Comm. 7 (2005) 505÷509.
  • [34] Tsuchiya H., Macak J. M., Taveira L., Balaur E., Ghicov A., Sirotna K., Schmuki P.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Comm. 7 (2005) 576÷580.
  • [35] Tsuchiya H., Macak J. M., Taveira L., Schmuki P.: Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chem. Phys. Letters 410 (2005) 188÷191.
  • [36] Zhao J., Wang X., Chen R., Li L.:Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Materials Letters 59 (2005) 2329÷2332.
  • [37] Krasicka-Cydzik E., Głazowska I., Kaczmarek A., Białas-Heltowski K.: Influence of floride ions concentration on growth of anodic sel-aligned layer of TiO2 nanotubes. Biomater. Eng. R. 11 (77÷80) (2008) 46.
  • [38] Krasicka-Cydzik E., Głazowska I., Kaczmarek A., Białas-Heltowski K.: Influence of scan rate on formation of anodic TiO2 nanotubes. Biomater. Eng, 77-80 (2008) 48÷51
  • [39] Krasicka-Cydzik E., Kowalski K., Kaczmarek A.: Anodic and nanostructural layers on titanium and its alloys for medical applications. Mater. Eng. 5 (2009) 132.
  • [40] Krasicka-Cydzik E., Głazowska I., Kaczmarek A., Klekiel T., Kowalski K.: Nanostructural oxide layer formed by anodizing on titanium and its implant alloy with niobium. Biomater. Eng. 85 (2009) 325.
  • [41] Krasicka-Cydzik E., Kowalski K., Kaczmarek A., Glazowska I., Bialas Heltowski K.: Competition between phosphates and fluorides at anodic formation of titania nanotubes on titanium. Surface and Interface Analysis 42 (6-7) (2010) 471÷474.
  • [42] Kaczmarek A., Klekiel T., Krasicka-Cydzik E.: Fluoride concentration effect on the anodic growth of self aligned oxide nanotube array on Ti6Al7Nb alloy. Surface and Interface Analysis 42 (6-7) (2010) 510.
  • [43] Machnik M., Głazowska I., Krasicka-Cydzik E.: Investigation for Ti/TiO2 electrode used as a platform for H2O2 biosensing. Mater. Eng. 5 (2009) 363÷365.
  • [44] Łoin J., Kaczmarek A., Krasicka-Cydzik E.: Attempt to elaborate platform of the IIIrd generation biosensor for H2O2 on the surface of Ti covered with titania nanotubes. Biomedical Eng. 16 (2) (2010) 54÷56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPL8-0022-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.