PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porowaty węgiel grafityzowany otrzymywany techniką zol-żel

Autorzy
Identyfikatory
Warianty tytułu
EN
Porous graphitic carbon produced with sol-gel processing
Języki publikacji
PL
Abstrakty
PL
Wykorzystując technikę zol-żel podjęto próbę syntezy materiału węglowego o dobrze rozwiniętej strukturze porowatej, dużej wartości powierzchni właściwej i możliwie wysokim stopniu grafityzacji. Materiały takie mają unikatową kombinację właściwości fizykochemicznych i powierzchniowych - - wysoką przewodność elektryczną i termiczną, odporność na korozję chemiczną, stabilność termiczną, trwałość mechaniczną, małą gęstość, a przy tym mogą być otrzymywane z tanich i szeroko dostępnych surowców. Mogą więc znaleźć zastosowanie jako materiał elektrodowy w elektrochemicznych zasobnikach energii. Pierwotną strukturę porowatą materiału formowano na etapie syntezy zol-żel i zachodzącej w wyniku polikondensacji rezorcyny i furfuralu separacji faz. Porowatość rozwijano, dodatkowo stosując w roli matrycy koloidalną krzemionkę. Syntezę prowadzono w wodno-metanolowym roztworze chlorku niklu(II) pełniącego rolę prekursora katalizatora grafityzacji. Otrzymany w procesie zol-żel kserożel organiczny poddawano karbonizacji w temperaturze 1050°C, w wyniku czego następowała karbotermiczna redukcja NiCl2, grafityzacja matrycy węglowej i reorganizacja pierwotnej struktury porowatej kserożelu. Otrzymany w procesie pirolizy kompozyt kserożel węglowy/nikiel/krzemionka poddawano wymywaniu w kwasie fluorowodorowym. W wyniku takiego oczyszczania otrzymywano czysty materiał węglowy - zwany dalej kserożelem węglowym. Obecną w matrycy kserożelu węglowego fazę amorficzną usuwano następnie poprzez selektywne utlenianie w powietrzu w temperaturze 460°C. Powodowało to drastyczny spadek całkowitej objętości porów, redukcję wartości SBET oraz utratę wytrzymałości mechanicznej materiału. Otrzymane materiały węglowe analizowano za pomocą technik: SEM, XRD, niskotemperaturowej fizysorpcji azotu i TG-DTA. Przeprowadzono analizę porównawczą morfologii i struktury materiału węglowego przed i po procesie selektywnego utleniania fazy amorficznej węgla.
EN
The sol-gel process is applied to obtain nanoporous carbon material with both high surface area and high graphitization degree. Carbon materials characterized by 3D meso-, macroporous structure, well graphitized framework and large surface areas exhibit extraordinary performance as electrocatalyst supports and electrode materials (e.g. for fuel cells, double-layer capacitors and lithium ion batteries). The presence of well-interconnected meso- and macropores allows reduced diffusional limitations often occurring in classical carbon-supported catalysts, while the graphitization of the carbon matrix improves its electrical conductivity (Fig. 1). Graphitic nanoporous carbon was obtained via pyrolysis of organic xerogel doped with nickel(II) chloride (Fig. 2). Doping was realized through chloride solubilization in a water-methanol solution of resorcinol and furfural. During carbonization of the doped organic xerogel in 1050°C, metallic nanoparticles that catalyze the formation of graphitic structures were generated. The possibility of enhancing the porosity of the xerogel via templating with colloidal silica was investigated. The removal of the metal and silica templates leads to monoliths of carbon xerogel characterized by multimodal porosity with substantially enhanced mesoporosity resulting in a SBET of 268 m2/g (Tab. 1). Next, a selective-combustion process was used on the bulk carbon material produced by this solid-state synthesis process, yielding purified graphitic nanostructures. Removal of the amorphous carbon by a selectivecombustion process significantly reduced the material's mesoporosity and SBET, also causing loss of its mechanical strength. The carbon xerogel samples before and after selective-combustion were investigated by means of SEM (Fig. 3), XRD (Fig. 4), N2 physisorption (Fig. 5 and 6), and TG-DTA (Fig. 7). The results obtained for both materials were then compared.
Rocznik
Strony
115--121
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
autor
  • Instytut Chemii, Wydział Nowych Technologii i Chemii, Wojskowa Akademia Techniczna, Warszwa, wkicinski@wat.edu.pl
Bibliografia
  • [1] Raymundo-Piñero E., Leroux F., Béguin F.: A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18 (2006) 1877÷1882.
  • [2] Wang D-W., Li F., Liu M., Lu G.Q., Cheng H-M.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. 120 (2008) 379÷382.
  • [3] Ji X., Herle P. S., Rho Y., Nazar L.F.: Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of triblock polymers. Chem. Mater. 19 (2007) 374÷383.
  • [4] Wallace G. G. , Chen J., Li D., Moulton S. E., Razal J. M.: Nanostructured carbon electrodes. J. Mater. Chem. 20 (2010) 3553÷3562.
  • [5] Frackowiak E., Beguin F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39 (2001) 937÷950.
  • [6] Yamada H., Watanabe Y., Moriguchi I., Kudo T.: Rate capability of lithium intercalation into nanoporous graphitized carbons. Sol. St. Ionics 179 (2008) 1706÷1709.
  • [7] Wang Y., Su F., Lee Y. J., Zhao X. S.: Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage. Chem. Mater. 18 (2006) 1347÷1353.
  • [8] Lu A-H., Li W-C., Salabas E-L., Spliethoff B., Schűth F.: Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon. Chem. Mater. 18 (2006) 2086÷2094.
  • [9] Niu J. J., Wang J. N., Zhang L., Shi Y.: Electrocatalytical activity on oxidizing hydrogen and methanol of novel carbon nanocages of different pore structures with various platinum loadings. J. Phys. Chem. C 111 (2007) 10329÷10335.
  • [10] Wang J. N., Zhao Y. Z., Niu J. J.: Preparation of graphitic carbon with high surface area and its application as an electrode material for fuel cells. J. Mater. Chem. 17 (2007) 2251÷2256.
  • [11] Sevilla M., Sanchís C., Valdés-Solís T., Morallón E., Fuertes A. B.: Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon 46 (2008) 931÷939.
  • [12] Teng S. J., Wang X. X., Xia B. Y., Wang J. N.: Preparation of hollow carbon nanocages by iodine-assisted heat treatment. J. Power Sources 195 (2010) 1065÷1070.
  • [13] Sheng Z. M., Wang J. N.: Thin-walled carbon nanocages: direct growth, characterization, and applications. Adv. Mater. 20 (2008) 1071÷1075.
  • [14] Su F., Zhao X. S., Wang Y., Zeng J., Zhou Z., Yang Lee J.: Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B 109 (2005) 20200÷20206.
  • [15] Joo J. B., Kim Y. J., Kim W., Kim P., Yi J.: Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation. Catalysis Commun. 10 (2008) 267÷271.
  • [16] Wang J. N., Zhang L., Niu J. J., Yu F., Sheng Z. M., Zhao Y. Z., Chang H., Pak C.: Synthesis of high surface area, water-dispersible graphitic carbon nanocages by an in situ template approach. Chem. Mater. 19 (2007) 453÷459.
  • [17] Xia B. Y., Wang J. N., Wang X. X., Niu J. J., Sheng Z. M., Hu M. R., Yu Q. C.: Synthesis and application of graphitic carbon with high surface area. Adv. Funct. Mater. 18 (2008) 1790÷1798.
  • [18] Wang L., Tian C., Wang B., Wang R., Zhou W., Fu H.: Controllable synthesis of graphitic carbon nanostructures from ion-exchange resiniron complex via solid-state pyrolysis process. Chem. Commun. (2008) 5411÷5413 .
  • [19] Wang C., Ma D., Bao X.: Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation. J. Phys. Chem. C 112 (2008) 17596÷17602.
  • [20] Sheng Z. M., Wang J. N.: Growth of magnetic carbon with a nanoporous and graphitic structure. Carbon 47 (2009) 3271÷3279.
  • [21] Zhang L-S., Li W., Cui Z-M., Song W-G.: Synthesis of porous and graphitic carbon for electrochemical detection. J. Phys. Chem. C 113 (2009) 20594÷20598.
  • [22] El Hamaoui B., Zhi L., Wu J., Li J., Lucas N. T., Tomović Ž., Kolb U., Müllen K.: Solid-state pyrolysis of polyphenylene-metal complexes: A facile approach toward carbon nanoparticles. Adv. Funct. Mater. 17 (2007) 1179÷1187.
  • [23] Wang Z., Zhang X., Liu X., Lv M., Yang K., Meng J.: Co-gelation synthesis of porous graphitic carbons with high surface area and their applications. Carbon 2010, artykuł w druku, doi:10.1016/j.carbon.2010.08.056.
  • [24] Shanahan P. V., Xu L., Liang C., Waje M., Dai S., Yan Y. S.: Graphitic mesoporous carbon as a durable fuel cell catalyst support. J. Power Sources 185 (2008) 423÷427.
  • [25] Cui X., Guo L., Cui F., He Q., Shi J.: Electrocatalytic activity and CO tolerance properties of mesostructured Pt/WO3 composite as an anode catalyst for PEMFCs. J. Phys. Chem. C 113 (2009) 4134.
  • [26] Shao Y., Yin G., Gao Y.: Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 171 (2007) 558.
  • [27] Shao Y., Zhang S., Kou R., Wang X., Wang C., Dai S., Viswanathan V., Liu J., Wang Y., Lin Y.: Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. J. Power Sources 195 (2010) 1805÷1811.
  • [28] Cuong N. T., Chi D. H., Kim Y.-T., Mitani T.: Structural and electronic properties of Ptn (n = 3, 7, 13) clusters on metallic single wall carbon nanotube. Phys. Status Solidi B 243 (13) (2006) 3472÷3475.
  • [29] Gupta G., Slanac D. A., Kumar P., Wiggins-Camacho J. D., Kim J., Ryoo R., Stevenson K. J., Johnston K. P.: Highly stable Pt/ordered graphitic mesoporous carbon electrocatalysts for oxygen reduction. J. Phys. Chem. C 114 (2010) 10796÷10805.
  • [30] Ritz B., Heller H., Myalitsin A., Kornowski A., Martin-Martinez F. J., Melchor S., Dobado J. A., Juárez B. H., Weller H., Klinke C.: Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes. ACS Nano 4 (2010) 2438÷2444 .
  • [31] Chen J., Li K., Luo Y., Guo X., Li D., Deng M., Huang S., Meng Q.: A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 47 (2009) 2704÷2708.
  • [32] Li Z., Jaroniec M., Lee Y-J., Radovic L. R.: High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method. Chem. Commun. (2002) 1346÷1347.
  • [33] Raymundo-Piñero E., Azais P., Cacciaguerra T., Cazorla-Amorós D., Linares- Solano A., Béguin F.: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon 43 (2005) 786÷795.
  • [34] Kruk M., Kohlhaas K. M., Dufour B., Celer E. B., Jaroniec M., Matyjaszewski K., Ruoff R. S., Kowalewski T.: Partially graphitic, high-surfacearea mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Micropor. Mesopor. Mater. 102 (2007) 178÷187.
  • [35] Knox J. H., Gilbert M. T.: UK Patent 2035282 (1978) oraz UK Patent 7939449 (1979).
  • [36] Knox J. H., Kaur B., Millward G. R.: Structure and performance of porous graphitic carbon in liquid chromatography. J. Chromatogr. 352 (1986) 3÷25.
  • [37] Yoon S. B., Chai G. S., Kang S. K., Yu J-S., Gierszal K. P., Jaroniec M.: Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J. Am. Chem. Soc. 127 (2005) 4188÷4189.
  • [38] Sevilla M., Fuertes A. B.: Catalytic graphitization of templated mesoporous carbons. Carbon 44 (2006) 468÷474.
  • [39] Lei Z., Xiao Y., Dang L., Bai S., An L.: Graphitized carbon with hierarchical mesoporous structure templated from colloidal silica particles. Micropor. Mesopor. Mater. 109 (2008) 109÷117.
  • [40] Xia Y., Mokaya R.: Synthesis of ordered mesoporous carbon and nitrogendoped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv. Mater. 16 (2004) 1553÷1558.
  • [41] Xia Y., Mokaya R.: Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem. Mater. 17 (2005) 1553÷1560.
  • [42] Fuertes A. B., Centeno T. A.: Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J. Mater. Chem. 15 (2005) 1079÷1083.
  • [43] Yang H., Yan Y., Liu Y., Zhang F., Zhang R., Meng Y., Li M., Xie S., Tu B., Zhao D.: A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches. J. Phys. Chem. B 108 (2004) 17320÷17328.
  • [44] Kim C. H., Lee D-K., Pinnavaia T. J.: Graphitic mesostructured carbon prepared from aromatic precursors. Langmuir 20 (2004) 5157÷5159.
  • [45] Kim T-W., Park I-S., Ryoo R.: A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew. Chem. Int. Ed. 42 (2003) 4375÷4379.
  • [46] Shanahan P. V., Xu L., Liang C., Waje M., Dai S., Yan Y. S.: Graphitic mesoporous carbon as a durable fuel cell catalyst support. J. Power Sources 185 (2008) 423÷427.
  • [47] Liang C., Xie H., Schwartz V., Howe J., Dai S., Overbury S. H.: Opencage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutene. J. Am. Chem. Soc. 131 (2009) 7735÷7741.
  • [48] Gupta G., Slanac D. A., Kumar P., Wiggins-Camacho J. D., Wang X., Swinnea S., More K. L., Dai S., Stevenson K. J., Johnston K. P.: Highly stable and active Pt-Cu oxygen reduction electrocatalysts based on mesoporous graphitic carbon supports. Chem. Mater. 21 (2009) 4515÷4526.
  • [49] Oya A., Marsh H.: Phenomena of catalytic graphitization. J. Mater. Sci. 17 (1982) 309÷322.
  • [50] Lee T. K., Ji X., Rault M., Nazar L. F.: Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines. Angew. Chem. Int. Ed. 48 (2009) 5661÷5665.
  • [51] Han S., Yun Y., Park K-W., Sung Y-E., Hyeon T.: Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes. Adv. Mater. 15 (2003) 1922÷1925.
  • [52] Hyeon T., Han S., Sung Y-E., Park K-W., Kim Y-W.: High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew. Chem. Int. Ed. 42 (2003) 4352÷4356 .
  • [53] Maldonado-Hodar F-J., Moreno-Castilla C., Rivera-Utrilla J., Hanzawa Y., Yamada Y.: Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16 (2000) 4367÷4373.
  • [54] Fu R., Dresselhaus M. S., Dresselhaus G., Zheng B., Liu J., Satcher J. Jr., Baumann T. F.: The growth of carbon nanostructures on cobalt-doped carbon aerogels. J. Non-Cryst. Solids 318 (2003) 223÷232.
  • [55] Celorrio V., Calvillo L., Martínez-Huerta M. V., Moliner R., Lázaro M. J.: Study of the synthesis conditions of carbon nanocoils for energetic applications. Energy Fuels 24 (2010) 3361÷3365.
  • [56] Jin H., Zhang H., Ma Y., Xu T., Zhong H., Wang M.: Stable support based on highly graphitic carbon xerogel for proton exchange membrane fuel cells. J. Power Sources 195 (2010) 6323÷6328.
  • [57] Fu R., Baumann T. F., Cronin S., Dresselhaus G., Dresselhaus M. S., Satcher J. H., Jr.: Formation of graphitic structures in cobalt- and nickel- -doped carbon aerogels. Langmuir 21 (2005) 2647÷2651.
  • [58] Job N., Pirard R., Marien J., Pirard J-P.: Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42 (2004) 619÷628.
  • [59] Job N., Sabatier F., Pirard J. P., Crine M., Leonard A.: Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44 (2006) 2534÷2542.
  • [60] Hanzawa Y., Hatori H., Yoshizawa N., Yamada Y.: Structural changes in carbon aerogels with high temperature treatment. Carbon 40 (2002) 575÷581.
  • [61] Kiciński W.: Aerożele węglowe otrzymywane z prekursora rezorcynowo- -furfuralowego. Biul. WAT 58 (4) (2009) 197÷221.
  • [62] Kiciński W.: Właściwości strukturalne kserożeli węglowych otrzymywanych poprzez katalityczną grafityzację kserożeli rezorcynowo-furfuralowych. Biul. WAT, artykuł w druku.
  • [63] Long J. W., Laskoski M., Keller T. M., Pettigrew K. A., Zimmerman T. N., Qadri S. B., Peterson G. W.: Selective-combustion purification of bulk carbonaceous solids to produce graphitic nanostructures. Carbon 48 (2010) 501÷508.
  • [64] Warren B. E.: X-ray diffraction. Dover Publications, New York (1990).
  • [65] Biscoe J., Warren B. E.: An X-ray study of carbon black. J. Appl. Phys. 13 (1942) 364÷371.
  • [66] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T.: Reporting physisorption data for gas/ solid systems – with special reference to the determination of surface area and porosity. Pure and Appl. Chem. 57 (4) (1985) 603÷619.
  • [67] Kruk, M.; Li, Z.; Jaroniec, M.; Betz, W. R.: Nitrogen adsorption study of surface properties of graphitized carbon blacks. Langmuir 15 (1999) 1435.
  • [68] Li Z., Jaroniec M.: Colloid-imprinted carbons as stationary phases for reversed- phase liquid chromatography. Anal. Chem. 76 (2004) 5479÷5485.
  • [69] Derbyshire F. J., Presland A. E. B., Trimm D. L.: Graphite formation by dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13 (1975) 111÷113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPL8-0021-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.