PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka wybranych właściwości cieplnych proszków ceramicznych typu RE2Zr2O7

Autorzy
Identyfikatory
Warianty tytułu
EN
Characteristics of the selected thermal properties of RE2Zr2O7 type ceramic powders
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki badań charakteryzujące podstawowe właściwości cieplne proszków ceramicznych typu RE2Zr2O7 o strukturze pyrochlorów, przeznaczonych do natryskiwania plazmowego powłokowych warstw barierowych. Badaniom poddano cztery proszki nowego typu, gdzie RE = Gd, Sm, Nd, La oraz standardowy proszek typu ZrO2.8Y2O3. Zakres zrealizowanych badań obejmował ocenę dyfuzyjności cieplnej proszków metodą laser-flash w zakresie temperatury od 25°C do 1500°C. Dokonano również pomiaru ciepła właściwego oraz współczynnika rozszerzalności cieplnej w tym samym zakresie. Badania wykonane zostały na pastylkach otrzymanych w wyniku prasowania. Na podstawie uzyskanych wyników obliczono wartość przewodnictwa cieplnego ceramiki pyrochlorowej, która stanowi podstawowe kryterium oceny i doboru proszków przeznaczonych do natryskiwania powłokowych warstw barierowych. Stwierdzono, że wszystkie cztery proszki nowego typu wykazują zdecydowanie niższą wartość przewodnictwa cieplnego w całym zakresie temperatury.
EN
The paper presents the investigation results characterizing basic thermal properties of RE2Zr2O7 type ceramic powders with pyrochlore structure, designed for plasma spraying of thermal barrier coatings. Four powders of a new type, where RE = Gd, Sm, Nd and La, and standard powder of ZrO2.8Y2O3 type were subjected to the investigation. The investigation scope included thermal diffusivity assessment of the powders with the laser-flash method within the temperature range from 25°C to 1500°C. Specific heat and thermal expansion coefficient measurements were also performed in the same temperature range. Testing was performed on the pellets obtained by pressing the powders. On the basis of the results obtained, thermal conductivity value of the pyrochlore ceramics was calculated, which is the basic criterion for assessment and selection of the powders intended for spraying the thermal barrier coatings. It was found that all four powders of a new type showed a definitely lower value of thermal conductivity within the entire temperature range.
Słowa kluczowe
Rocznik
Strony
1107--1112
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Lehmann H. D., Heimann R. B.: Thermally sprayed thermal barrier coatings (TBC) systems: a survay of recent patents. Recent Patents on Materials Science 1 (2008) 140-158.
  • [2] Vassen R., Tietz F., Kerkhoff G., Stoever D.: New materials for advanced thermal barrier coatings, Lecomte-Beckers J., Schuber F., Ennis P. J., (Ed.) Proceedings of the 6th Liége Conference on Materials for Advanced Power Engineering (Universite de Liége, Belgium, November 1998) (1998) 1627-1635.
  • [3] Lackey W. J., Stinton D. P., Cerny G. A., Schaffhauser A. C., Fehrenbacher L. L.: Ceramic coatings for advanced heat engines – a review and projection. Advanced Ceramic Materials 2 (1987) 24-30.
  • [4] Vassen R. and Stoever D.: Conventional and new materials for thermal barrier coatings. In: Functional Grandient Materials and Surface Layers Prepared by Fine Particles Technology, ed. M.-I. Baraton and I. Uvarova. Kluwer Academic Publishers, Netherlands 199-216.
  • [5] Schulz U. i in.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Science and Technology 7 (2003) 73-80.
  • [6] Maloney M. J.: U.S. Patent No. 6,117,560 (2000).
  • [7] Maloney M. J.: U.S. Patent No. 6,284,323 (2001).
  • [8] Subramanian R.: U.S. Patent No. 6,258,467 (2001).
  • [9] Subramanian M. A., Sleight A. W.: In: Handbook on the physics and chemistry of rare earths. ed. Gschneider, K. A. and Erying, L., Elsevier Science Publishers, Oxford, UK (1993) 225.
  • [10] Vassen R., Cao X., Tietz F., Kerkhoff G., Stoever D.: La2Zr2O7 – a new candidate for thermal barrier coatings. Lugscheider E., Kammer P. A., (Ed.) Proceedings of the United Thermal Spray Conference’99 (Düsseldorf Germany, March 1999), ASM International, Verlag für Schweißen und Verwandte Verfahren, Düsseldorf (1999) 830-834. .
  • [11] Vassen R., Cao X., Tietz F., Basu D., Stoever D.: Zirconates as new materials for thermal barrier coatings. Journal of American Ceramic Society 83 (2000) 2023-2028.
  • [12] Wilden J., Wank M., Steffens H. D., Brune M.: New thermal barrier coating system for high temperature applications. Coddet Christian, (Ed.) Proceedings of the 15th International Thermal Spray Conference: Thermal Spray Meeting the Challenges of the 21st Century (Nice, France, May 1998), ASM International, Materials Park, OH, USA (1998) 1669-1673.
  • [13] Subramanian M. A., Aravamudan G., Subba Rao G. V.: Oxide pyrochlores a review. Progress in Solid State Chemistry 15 (1983) 55-143.
  • [14] Lehmann H. i in.: Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. Journal of American Ceramic Society 86 (2003) 1338-1344.
  • [15] Wu J. i in.: Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. Journal of American Ceramic Society 85 (2002) 3031-3035.
  • [16] Xu Q. i in.: Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings. Journal of American Ceramic Society 89 (2006) 340+342.
  • [17] Zhu D., Miller R. A.: Development of advanced low conductivity thermal barrier coatings. International Journal of Applied Ceramic Technology 1 (2004) 86-94.
  • [18] Konings R. J. M.: Estimation of the standard entropies of some Am(III) and Cm (III) compounds. Journal of Nuclear Materials 295 (2001) 57-63.
  • [19] Lutique S., Javorsky´ P., Konings R. J. M., van Genderen A. C. G., van Miltenburg J. C., Wastin F.: Low temperature heat capacity of Nd2Zr2O7 pyrochlore. Journal of Chemical Thermodynamics 35 (2003) 955-965.
  • [20] Wu J., Padture N. P., Klemens P. G., Gell M., Garcia E., Miranzo P., Osendi M. I.: Thermal conductivity of ceramics in the ZrO2-GdO1.5 system. Journal of Materials Research 17 (2002) 3193-3200.
  • [21] Zhan-Guo L., Jia-Hu O., Yu Z.Ł Structural evolution and thermophisical properties of (SmxGd1–x )2Zr2O7 (0 ≤ x ≤ 1.0) ceramics. Journal of Alloys and Compounds 472 (2009) 319-324.
  • [22] Hongming Z, Danqing Y., Zhiming Y., Lairong X.: Preparation and thermophisical properties of CeO2 doped La2Zr2O7 ceramics for thermal barrier coatings. Journal of Alloys and Compounds 438 (2007) 217-221.
  • [23] Wan C. L., Pan W., Xu Q., Qin Y. X., Wang J. D., Qu Z. X., Fang M. H.: Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: Experiment and theoretical model. Physical Review B 74 (2006) 144109.
  • [24] SchlichtingK. W., Padture N. P., Klemens P. G.: Thermal conductivity of dense and porous yttria-stabilized zirconia. Journal of Materials Science 36 (2003) 3003-3010.
  • [25] Suresh G., Seenivasan G., Krishnaiah M. V., Srirama Murti P.: Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium. Journal of Alloys and Compounds 269 (1998) L9-L12.
  • [26] Zhang H.-S., Xu Q., Wang F.-C., Liu L., Wei Y., Chen X.: Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings. Journal of Alloys and Compounds 475 (2009) 624-628.
  • [27] Zhou H., Yi D., Yu Z., Xiao L.: Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings. Journal of Alloys and Compounds 438 (2007) 217-221.
  • [28] Liu Z.-G., Ouyang J.-H., Zhou Y.: Structural evolution and thermophysical properties of (SmxGd1−x)2Zr2O7 (0 ≤ x ≤ 1.0) ceramics. Journal of Alloys and Compounds 472 (2009) 319-324.
  • [29] Lutique S., Konings R. J. M., Rondinella V. V., Somers J., Wiss T.: The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behavior of pyrochlore-based inert matrix fuel. Journal of Alloys and Compounds 352 (2003) 1-5.
  • [30] Liu Z.-G., Ouyang J.-H., Wang B.-H., Zhou Y., Li J.: Thermal expansion and thermal conductivity of SmxZr1–xO2–x/2 (0.1–x–0.5) ceramics. Ceramics International 35 (2009) 791-796.
  • [31] Lehmann H., Pitzer D., Pracht G., Vassen R., Stover D.: Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earthelement zirconate system. Journal of American Ceramic Society 86 (2003) 1338-1344.
  • [32] Rozmysłowska A., Witala B., Moskal G.: Thermal diffusivity measurement of zirconia and zirconate powders. Characterization of laser-flash method and LFA427 aparatus. Proceedings of 16thInternational Students Day of Metallurgy, ISDM 2009, VSB-Technical University of Ostrava, April 23-25 (2009) Book of Abstracts, p. 13.
  • [33] Moskal G., Witala B., Rozmysłowska A.: Thermal diffusivity of RE2Zr2O7 – type ceramic powders intended for TBC`s deposited by APS. Archives of Materials Science and Engineering 36 (2009) 76-81.
  • [34] Moskal G.: Microstructure and thermal diffusivity of RE zirconate powders for TBC system obtained by the APS method. 30th International Thermal Conductivity Conference, 18th International Thermal Expansion Symposium, Seven Springs Mountain Resort, Aug. 29-Sept. 2nd, 2009, Pittsburgh, Pennsylvania, USA, Extended Abstracts and Program – 74.
  • [35] Moskal G., Rozmysłowska A.: Microstructure and thermal diffusivity of Gd2Zr2O7 powders. Advanced Materials Research 98-91 (2010) 739-744.
  • [36] Moskal G., Rozmysłowska A., Gazda A., Homa M.: Wybrane termofizyczne właściwości proszków cyrkonianowych na bazie pierwiastków ziem rzadkich typu RE2Zr2O7 (RE-Gd, La, Sm, Nd) przeznaczonych do natryskiwania cieplnego powłokowych warstw barierowych. Prace Instytutu Odlewnictwa 4 (2009) 15-26.
  • [37] Moskal G.: Microstructure and thermal diffusivity of micro- and nanosized YSZ. Materials Science Forum 638-642 (2010) 900-905.
  • [38] Moskal G.: Microstructural characteristics and technological properties of YSZ-type powders designed for thermal spraying of TBC, IOP Conf. Series: Materials Science and Engineering 7 (2010) 012019, 11th European Workshop on Modern Developments and Applications in Microbeam Analysis IOP Publishing.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPL8-0016-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.