Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Konferencja
Advanced Materials and Technologies, AMT 2007 : XVIII Physical Metallurgy and Materials Science Conference (XVIII; 18-21.06.2007; Warszawa-Jachranka, Polska)
Języki publikacji
Abstrakty
The focus of this contribution is analysis of the state of residual stress in surface layers of ground bearing steel of grade DIN 17210-86 (ĆSN 14 220). The influence of various coolants on macroscopic residual stress was investigated. Three forms of cooling were applied: dry grinding, liquid coolant and flow of cold air from a Ranque- Hilsch vortex tube. The surfaces of the samples were analysed by X- ray diffraction technique in six azimuths in order to acquire complete strain tensors. Since -vs.-sin y/ dependances in grinding direction are non-linear and exhibit psi splitting, the method proposed by Dólle and Hauk [1] was used to evaluate tensors of anisotropic trialxial state of residual stress. The effective penetration depth of CrKa X-ray radiation into ferrous materials for sin2 y/= 0,4 is approximately 4 um and therefore removal of surface layers is a necessity in order to pinpoint the distribution of residual stresses beneath the surface. The impact of material removal should cause minimal or neglecting mechanical and thermal distortions to the investigated state of stress. Electro-chemical polishing, which was used, is acknowledged as the most appropriate tool [2].
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
455--458
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
autor
autor
- Department of Solid State Engineering, Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prrague 2, ganev@troja.fjfi.cvut.cz
Bibliografia
- [1] Hauk V.: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier, 1997.
- [2] Lee S.-J., Lee Y.-M., Chung M.-Y: Metal removal rate of the electrochemical mechanical polishing technology for stainless steel –the electrochemical characteristics, Proceedings IMechE Vol. 220, January 2006, p. 525-530.
- [3] Hwang J., Kompella S., Chandrasekar S., Farris T. N.: Measurement of Temperature Field in Surface Grinding Using Infra-Red Imaging System, ASME, Journal of Tribology Vol. 125, April 2003, p. 377 – 383.
- [4] Outwater J. O., Shaw M. C.: Surface Temperatures in Grinding, Trans. ASME Vol. 74, 1952, p. 73 – 86.
- [5] Macherauch E., Müller P.: Das sin2Ψ -Verfahren der röntgenographischen Spannungsmessung, Zeitschrift angewandte Physik Vol. 13, 1961, p. 33 – 38.
- [6] Kraus, I. – Ganev, N.: Residual Stress and Stress Gradients, In: Industrial Applications of X-Ray Diffraction. New York: Marcel Dekker, 2000, s. 793-811.
- [7] Akita K., Kubota K., Yoshioka Y., Suzuki H.: Analysis of Depth Profiles of Residual Stress Using Synchrotron Radiation, Material Science Forum Vols. 404 – 407, 2003, p. 293-298.
- [8] Webster P. J.: Neutron strain scanning, Neutron News Vol. 2, No. 2, 1991, p. 19-22.
- [9] Kohli S., Guo C., Malkin S.: Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels, Transactions of ASME Vol. 117, May 1995, p. 160 – 168.
- [10] Jaeger J. C.: Moving Sources of Heat and Temperature at Sliding Contact, Proceedings of Royal Society New South Wales Vol. 76, 1942, p. 203 – 224.
- [11] Carslaw H. S., Jaeger J. C.: Conduction of Heat in Solids. Oxford Science Publication, second edition, 1959, p. 266-270.
- [12] Dölle H., Hauk V., Jühe H. H., Krause H.: Zur röntgenographischen Ermittlung dreiachsiger Spannungszustände allgemeiner Orientierung, Materialprüf. 18, Nr. 11, November 1976, p. 427 – 431.
- [13] Wassermann G., Grewen J.: Texturen metallischer Werkstoffe. Springer-Verlag, Berlin, 1962.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPL8-0005-0093