PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Engineering benefits of mass recirculation in novel energy technologies with CO2 capture

Autorzy
Identyfikatory
Warianty tytułu
PL
Inżynieryjne korzyści z recyrkulacji masy w nowych technologiach energetycznych z wychwytem CO2
Języki publikacji
EN
Abstrakty
EN
Mass recirculation is an attractive approach that can substantially enhance CO2 separation and fuel conversion processes in energy generating systems. The paper is organised such that first, an overview of efficient and novel CO2 separation processes is provided. Next, novel energy technologies with CO2 capture are discussed with special emphasis given to engineering benefits of mass recirculation. Finally, main principles of enhancement of energy technologies with CO2 capture by mass recirculation are concisely expounded.
PL
Recyrkulacja masy jest atrakcyjnym podejściem, które może istotnie usprawnić procesy separacji CO2 i konwersji paliw w układach generacji energii. W artykule w pierwszej kolejności przedstawiono przegląd skutecznych i nowych procesów separacji CO2. Następnie, omówiono nowe technologie energetyczne z wychwytem CO2 ze szczególnym naciskiem położonym na inżynieryjne korzyści wynikające z recyrkulacji masy. Na zakończenie zwięźle wyeksponowano główne zasady usprawniania technologii energetycznych z wychwytem CO2 za pomocą recyrkulacji masy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
151--158
Opis fizyczny
Bibliogr. 39 poz., fig.
Twórcy
Bibliografia
  • [1] Anantharaman R., Bolland O., Asen K.I.: Novel cycles for power generation with CO2 capture using OMCM technology. Energy Procedia 1 (2009) 335-342.
  • [2] Anderson R.E., Brandt H., Viteri F.: US20050126156A1.
  • [3] Anderson R.E., Viteri F.: WO2001090548.
  • [4] Asen K.I., Sandvold E.: US20016298664.
  • [5] Bebar L., Stehlik P., Havlen L., Oral J.: Analysis of using gasification and incineration for thermal processing of wastes. Applied Thermal Engineering 25 (2005) 1045-1055.
  • [6] Blomen E., Hendriks C., Neele F.: Capture technologies: improvements and promising developments. Energy Procedia 1 (2009) 1505-1512.
  • [7] Budzianowski W.M.: A rate-based method for design of reactive gas-liquid systems, Rynek Energii (4) (2009) 21-26.
  • [8] Budzianowski W., Koziol A.: Stripping of ammonia from aqueous solutions in the presence of carbon dioxide: Effect of negative enhancement of mass transfer. Chemical Engineering Research and Design 83 (2005) 196-204.
  • [9] Budzianowski W.M., Miller R.: Auto-thermal combustion of lean gaseous fuels utilizing a recuperative annular double-layer catalytic converter. Canadian Journal of Chemical Engineering 86 (2008) 778-790.
  • [10] Budzianowski W.M., Miller R.: Superadiabatic lean catalytic combustion in a high-pressure reactor. International Journal of Chemical Reactor Engineering 7 (2009) A20.
  • [11] Buecker D., Griffin T., Winkler D.: WO2005064232.
  • [12] Butterman H.C., Castaldi M.J.: Syngas production via CO2 enhanced gasification of biomass fuels. Environmental Engineering Science 26 (2009) 703-713.
  • [13] Chen W.-H., Chiu T.-W., Hung H.-I.: Hysteresis loops of methane catalytic partial oxidation for hydrogen production under the effects of varied Reynolds number and Damköhler number. International Journal of Hydrogen Energy 35 (2010) 6291-6302.
  • [14] Chen Z., Song H.S., Portillo M., Lim C.J., Grace J.R., Anthony E.J.: Long-term calcination/carbonation cycling and thermal pretreatment for CO2 capture by limestone and dolomite. Energy and Fuel 23 (2009) 1437-1444.
  • [15] Christou C., Hadjipaschalis I., Poullikkas A.: Assessment of integrated gasification combined cycle technology competitiveness. Renewable and Sustainable Energy Reviews 12 (2008) 2459-2471.
  • [16] Dilmore R., Griffith C., Liu Z., Soong Y., Hedges S.W., Koepsel R., Ataai M.: Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture. International Journal of Greenhouse Gas Control 3 (2009) 401-410.
  • [17] Evulet A.T., Elkady A.M., Brand A.R., Chinn D.: On the performance and operability of GE's dry low NOX combustors utilizing exhaust gas recirculation for post-combustion carbon capture. Energy Procedia 1 (2009) 3809-3816.
  • [18] Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D.: Advances in CO2 capture technology - The US Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2 (2008) 9-20.
  • [19] Glarborg P., Bentzen L.L.B.: Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy and Fuel 22 (2008) 291-296.
  • [20] Grasa G., Gonzalez B., Alonso M., Abanades J.C.: Comparsion of CaO-based synthetic CO2 sorbents under realistic calcination condition. Energy and Fuel 21 (2007) 3560-3562.
  • [21] Holladay J.D., Hu J., King D.L., Wang Y.: An overview of hydrogen production technologies. Catalysis Today 139 (2009) 244-260.
  • [22] Ko D., Siriwardane R., Biegler L.T.: Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Industrial Engineering Chemistry Research 44 (2005) 8084-8094.
  • [23] Koh D.: US20080272340A1.
  • [24] Kotowicz J., Chmielniak T., Janusz-Szymańska K.: The influence of membrane CO2 separation on the efficiency of a coal-fired power plant. Energy 35 (2010) 841-850.
  • [25] Kotowicz J., Janusz-Szymańska K.: Integration of the coal-fired power plant thermal circuit with the membrane CCS installation. Rynek Energii (6) (2009) 123-128.
  • [26] Lee H.J., Lee J.D., Linga P., Englezos P., Kim Y.S., Lee M.S., Kim Y.D.: Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy 35 (2010) 2729-2733.
  • [27] Leo A, Liu S, Diniz da Costa JC. Development of mixed conducting membranes for clean coal energy delivery. Int J Greenhouse Gas Control 3 (2009) 357-367.
  • [28] Li H., Yan J., Yan J., Anheden M.: Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Applied Energy 86 (2009) 202-213.
  • [29] Liu H., Okazaki K.: Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel 82 (2003) 1427-1436.
  • [30] Muradov N., Choi P., Smith F., Bokerman G.: Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels. Journal of Power Sources 195 (2010) 1112-1121.
  • [31] Normann F., Andersson K., Leckner B., Johnsson F.: Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science 35 (2009) 385-397.
  • [32] Pipitone G., Bolland O.: Power generation with CO2 capture: Technology for CO2 purification. International Journal of Greenhouse Gas Control 3 (2009) 528-534.
  • [33] Powell C.E., Qiao G.G.: Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science 279 (2006) 1-49.
  • [34] Rohde A., Bergins C., Klauke F., Ehmann M., Buddenberg T., Vollmer B., Krause T., Gwosdz A.: WO2009100881A2.
  • [35] Scholes C.A., Kentish S.E., Stevens G.W.: Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering 1 (2008) 52-66.
  • [36] Steeneveldt R., Berger B., Torp T.A.: CO2 capture and storage: Closing the knowing-doing gap. Chemical Engineering Research and Design 84 (2006) 739-763.
  • [37] Takami K.M., Mahmoudi J., Time R.W.: A simulated H2O/CO2 condenser design for oxy-fuel CO2 capture process. Energy Procedia 1 (2009) 1443-1450.
  • [38] Thiruvenkatachari R., Su S., An H., Yu X.X.: Post combustion CO2 capture by carbon fibre monolithic adsorbents. Progress in Energy and Combustion Science 35 (2009) 438-455.
  • [39] Wall T., Liu Y., Spero C., Elliott L., Khare S., Rathnam R., Zeenathal F., Moghtaderi B., Buhre B., Sheng C., Gupta R., Yamada T., Makino K., Yu J.: An overview on oxyfuel coal combustion-State of the art research and technology development. Chemical Engineering Research and Design 87 (2009) 1003-1016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPL2-0022-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.