PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immobilizacja fizyczna lipaz. Część II. Immobilizacja lipaz przez pułapkowanie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Physical immobilization of lipases. Part II. Immobilization of lipases by entrapment
Języki publikacji
PL
Abstrakty
PL
W tej części artykułu przedstawiono problematykę immobilizacji fizycznej lipaz obejmującą techniki zamykania w sieci żelu, w mikro (makro) emulsjach, kapsułkowanie oraz otoczkowanie. Przedyskutowano wpływ procesu immobilizacji na aktywność, stabilność oraz selektywność unieruchomionych enzymów.
EN
This paper summarizes methods of lipases physical immobilization, including entrapment within the membrane and in polymeric matrices, coating, microencapsulation and micro (macro) emulsion system. The influence of immobilization process on changes of enzyme activity, stability, selectivity and other properties important in practical applications are considered.
Rocznik
Tom
Strony
81--85
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
autor
autor
  • Wydział Nauk o Żywności, SGGW w Warszawie
Bibliografia
  • [1] Antczak T., Bugla J., Mastalerz M., Niemiec A., Szeja W., Ślęk M., Galas E.: Immobilizacja unieruchomionych in situ lipaz Mucor w mikroporowatych kapsułkach alginianowych, Biotechnologia, 2000, 4, 51, 142-151.
  • [2] Antczak T., Bugla J., Szeja W., Galas E.: Kapsułkowanie immobilizowanych in situ endolipaz Mucor, Biotechnologia, 1999, 1, 44, 173-179.
  • [3] Antczak T., Graczyk J.: Lipazy: źródła, struktura i właściwości katalityczne, Biotechnologia, 2002, 2, 57, 130-145.
  • [4] Betigeri S.S., Neau S.H.: Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads, Biomaterials, 2002, 23, 3627-3636.
  • [5] Bryjak J.: Immobilizacja enzymów, Część I: Metody konwencjonalne, Wiadomości Chemiczne, 2004, 58, 9-10, 691-746.
  • [6] Bryjak J.: Immobilizacja enzymów, Część II: Reaktory membranowe, Wiadomości Chemiczne, 2004, 58, 9-10, 747-780.
  • [7] Buisson P., Pierre A.C.: Immobilization in quartz fiber felt reinforced silica aerogel improves the activity of Candida rugosa lipase in organic solvents, J. Mol. Catal. B: Enzymatic, 2006, 39, 1-4, 77-82.
  • [8] Carvalho C.M.L., Cabral J.M.S.: Reverse micelles as reaction media for lipases, Biochimia, 2000, 82, 1063- 1071.
  • [9] Chaubey A., Parshad R., Koul S., Taneja S.C., Qazi G.: Enantioselectivity modulation through immobilization of Arthobacter sp. lipase: Kinetic resolution of fluoxetine intermediate, J. Mol. Catal. B: Enzymatic, 2006, 42, 1-2, 39-44.
  • [10] Chen J.-P., Hwang Y.-N.: Polyvinyl formal resin plates impregnated with lipase-entrapped sol-gel polymer for flavor ester synthesis, Enzyme Microb. Technol., 2003, 33, 513-519.
  • [11] Chen J.-P., Lin W.-S.: Sol-gel powders and supported solgel polymers for immobilization of lipase in ester synthesis, Enzyme Microb. Technol., 2003, 32, 801-811.
  • [12] Dharmsthiti S., Luchai S.: Production and immobilization of lipase from Aeromonas sorbia harboring a heterologous gene, J. Ferment. Bioeng., 1998, 86, 3, 335-337.
  • [13] Fukunaga K., Minamijima N., Sugimura Y., Hang Z., Nakao K.: Immobilization of organic solvent-soluble lipase in nonaqueous conditions and properties of the immobilized enzymes, J. Biotechnol., 1996, 52, 81-88.
  • [14] Furukawa S., Ono T., Ijima H., Kawakami K.: Enhancement of activity of sol-gel immobilized lipase in organic media by pretreatment with substrate analogues, J. Mol. Catal. B: Enzymatic, 2001, 15, 65-70.
  • [15] Giorno L., Drioli E.: Biocatalytic membrane reactors: applications and perspectives [Reviews], Tibtech, 2000, 18, 339-349.
  • [16] Hasan F., Shah A.A., Hameed A.: Industrial applications of microbial lipases, Enzyme Microb. Technol., 2006, 39, 235-251.
  • [17] Hertzberg S., Kvittingen L., Anthonsen T., Skjåk-Bræk G.: Alginate as immobilization matrix and stabilizing agent in two-phase liquid system: Application in lipase- catalysed reactions, Enzyme Microb. Technol., 1992, 14, 42-47.
  • [18] Kanwar L., Goswami P.: Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its application in the synthesis of isoamyl acetate using membrane-immobilised lipase, Enzyme Microb. Technol., 2002, 31, 727-735.
  • [19] Kierkels J.G.T., Vleugels L.F.W., Gelade E.T.F., Vermeulen D.P., Kamphuis J., Wandrey C., van den Tweel W.J.J.: Pseudomonas fluorescens lipase adsorption and kinetics of hydrolysis in a dynamic emulsion system, Enzyme Microb. Technol., 1994, 16, 513-521.
  • [20] Lopez F., Cinelli G., Ambrosone L., Colafemmina G., Ceglie A., Palazzo G.: Role of the cosurfactant in waterin-oil microemulsion: interfacial properties tune the enzymatic activity of lipase, Colloids Surf. A., 2004, 237, 49-59.
  • [21] Lopez F., Venditti F., Cinelli G., Ceglie A.: The novel hexadecyltrimethylammonium bromide (CTAB) based organogel as reactor for ester synthesis by entrapped Candida rugosa lipase, Process Biochem., 2006, 41, 1, 114-119.
  • [22] Magnin D., Dumitriu S., Magny P., Chornet E.: Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization, Biotechnol. Prog., 2001, 17, 734-737.
  • [23] Matsumoto M., Ohashi K.: Effect of immobilization on thermostability of lipase from Candida rugosa, Biochem. Eng. J., 2003, 14, 1, 75-77.
  • [24] Matsumoto M., Sumi N., Ohmowi K., Kondo K: Immobilization of lipase in microcapsules prepared by organic and inorganic materials, Process Biochem., 1998, 33, 5, 535-540.
  • [25] Okahata Y., Mori T.: Lipid-coated enzymes as efficient catalysis in organic media, Tibtech, 1997, 15, 50-54.
  • [26] Persson M., Mladenoska I., Wethje E., Adlercreutz P.: Preparation of lipases for use in organic solvents, Enzyme Microb. Technol., 2002, 31, 6, 833-841.
  • [27] Plieva F.M., Kochetkov K.A., Singh I., Parmar V.S., Belokon Yu.N., Lozinsky V.I.: Immobilization of hog pancreas lipase in macroporous poly (vinylalcohol)-cryogel carrier for biocatalysis in water-poor media, Biotechnol. Lett., 2000, 22, 551-554.
  • [28] Rucka M., Turkiewicz B.: Ultrafiltration membranes as carriers for lipase immobilization, Enzyme Microb. Technol., 1990, 12, 52-55.
  • [29] Rucka M., Winnicki T., Żuk J.S.: Membrany (błony) enzymatyczne, Post. Biochem., 1987, 33, 81-92.
  • [30] Soni K., Madamwar D.: Ester synthesis by lipase immobilized on silica and microemulsion based organogels (MBGs), Process Biochem., 2001, 36, 607-611.
  • [31] Sroka Z.: The activity of lipase from Rhizopus sp. In native form and after immobilization on hollow-fiber membranes, J. Membr. Sci., 1994, 97, 209-214.
  • [32] Wang Y., Hu Y., Xu J., Luo G., Dai Y.: Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen, J. Membr. Sci., 2007, 293, 133-141.
  • [33] Yadav G.D., Jadhav S.R.: Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: Transesterification in non-aqueous medium, Microporous and Mesoporous Materiale, 2005, 86, 215-222.
  • [34] Zaitsev S.Y., Gorokhova I.V., Kashtigo T.V., Zintchenko A., Dautzenberg H.: General approach for lipases immobilization in polyelectrolyte complexes, Colloids Surf. A: Physicochem. Eng. Aspects, 2003, 221, 209-220.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPL2-0014-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.