Identyfikatory
Warianty tytułu
Zachowanie statyczne historycznych sklepień i kopuł
Języki publikacji
Abstrakty
Po przeanalizowaniu problematyki przekryć wznoszonych techniką murarską w dawnych czasach, okazało się, że krzywizna i siły rozporu są głównymi elementami pozwalającymi wykonać murowane konstrukcje ponad dużymi przestrzeniami. Podstawowe właściwości budulca nie gwarantują wytrzymałości na rozciąganie, ani nie dają pewności w kwestii pracy belek. Jednakże w ścianach 2D i sklepieniach o podwójnej krzywiźnie, specyficzna konfiguracja sklepienia może w niektórych przypadkach, dzięki działaniu sił ściskających i tarcia, pozwolić na powstanie modelu równowagi obejmującego rozciąganie, co wyjaśnia nadspodziewaną nośność niektórych ścian i kopuł. Ogólnie uznaje się, że z wyjątkiem nielicznych przypadków, założenie braku naprężeń rozciągających daje w efekcie odpowiedni model do oceny konstrukcji. Ta krótko przedstawiona tutaj teoria i jej zastosowanie w przypadku kopuł, zostały szczegółowo wyjaśnione, czego efektem jest równanie Monge-Ampere wyznaczające schemat statyczny w naprężeniu błonowym powierzchni.
After discussing the problem of roofing empty spaces by ancient masonry builders, it is found out that curvature and horizontal thrust are the basic elements for masonry to get over long spans. Basic properties of masonry do not allow to rely on tensile strength, and beam behaviour cannot be trusted on. Nevertheless in 2D walls and in double curvature vaults, a particular organization of the vault apparatus can in some instances, through the action of compression and friction, give place to a equilibrium pattern including tension, which explains the unexpected good performance of some walls and cupolas. Anyway, it is recognized that, apart from a few cases, the No-Tension assumption yields a effective model for structural assessment. The theory is briefly illustrated, and its application to vaults is explained in detail, leading to a Monge-Ampere equation ruling the static regime through a membrane stress surface.
Czasopismo
Rocznik
Tom
Strony
65--81
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
Bibliografia
- [1] Baratta A. (2008) Gaudi: La forma della struttura. Fondamenti scientifi ci e tecnici di un processo progettuale e costruttivo (Italian). In Pane G. (ed): Attualita di Antoni Gaudí. Teoria e prassi di un nuovo linguaggio architettonico, Napoli, CLEAN, 48-55.
- [2] Benvenuto E. (1991) An introduction to the history of structural mechanics. Part I, statics and resistance of solids. Part II, vaulted structures and elastic systems. Springer-Verlag, New York.
- [3] Cowan H.J. (1977) A history of masonry and concrete domes in building construction. Building and Environment. 12, Pergamon Press, 1-24.
- [4] Huerta S. (2001) Mechanics of masonry vaults: In Lourenco P.B., Roca P. (eds.): The equilibrium approach in Historical Constructions. Guimaraes, 47-69.
- [5] Huerta S. (2008) The analysis of masonry architecture: A historical approach. Architectural Science Review, 51(4), 297-328.
- [6] Hegemier G.A., Nunn R.O., Arya S.K. (1978) Behaviour of concrete masonry under biaxial stresses In: Proc. North American Masonry Conf., University of Colorado, Boulder, U.S.A., paper 1.
- [7] Page A..W. (1981) The biaxial compressive strength of brick masonry. Proc. Instn. of Civ. Engrs, Part 2, 71, 893-906.
- [8] Baratta A. (2007) Apparecchio murario e statica delle strutture in muratura (Italian). Notiziario dell’ Ordine degli Ingegneri della Provincia di Napoli, 2, 24-33.
- [9] Lenza P. (1983) Modelli di comportamento e direttrici di restauro delle scale in muratura realizzate con voltine a sbalzo (Italian). In: Proceedings of the Workshop at the Faculty of Engineering of the University of Naples, Istituto di Tecnica delle Costruzioni.
- [10] Baratta A., Corbi I. (2009) On masonry vaulted stairs: Statics and FRP reinforcement. In Di Tommaso A. (ed): Proc. of the 3rd Nat. Conference on Mechanics of masonry structures reinforced by composites: modelling, experimentation, design and control (MuRiCo3), Venezia, 51-58.
- [11] Heyman, J. (1977) Equilibrium of shell structures, Oxford University Press, Oxford, pp. 134.
- [12] Farshad M. (1977) On the shape of momentless tensionless masonry domes. Building and Environment, 12(2), 81-85.
- [13] Wendland, D. (2005) Vaults built without formwork. In: Proc. Int. Conf. on Theory and practice of construction: knowledge means, model-didactic and research experience, Ravenna, Italy, 381-388.
- [14] Baratta A., Corbi O. (2010) An Approach to Masonry Structural Analysis by the No-Tension Assumption – Part I: Material Modeling, Theoretical Setup, and Closed Form Solutions. Applied Mechanics Reviews, 63(4), pp. 17.
- [15] Baratta A., Corbi O. (2010) An Approach to Masonry Structural Analysis by the No-Tension Assumption – Part II: Load Singularities, Numerical Implementation and Applications. Applied Mechanics Reviews, 63(4), pp. 21.
- [16] Gilbarg D., Trudinger N. S. (2001) Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 2nd Edition, pp. 544.
- [17] Baratta A., Corbi O. (2011) On the statics of No-Tension masonry-like vaults and shells: solution domains, operative treatment and numerical validation. Annals of Solid and Structural Mechanics, 2 (2-4), 107-122.
- [18] Baratta A., Corbi, O. (2010) On the Equilibrium and Admissibility Coupling in NRT Vaults of General Shape. International Journal of Solids and Structures, 47(17), 2276-2284.
- [19] Zhang J.Y., Ohsaki M. (2006) Adaptive force density method for form-fi nding problem of tensegrity structures. International Journal of Solids and Structures, 43, 5658-5673.
- [20] Donghi D. (1906) Manuale dell’ Architetto (Italian), Vol. I, Part I. Ed. UTET, Torino
- [21] Heyman, J. (1966) The stone skeleton. Journal of Solids and Structures, 2, 269-279.
- [22] Orduna A., Lourenco P.B. (2001) Limit analysis as a tool for the simplifi ed assessment of ancient masonry structures. In Lourenco P.B., Roca P. (Eds.): Historical Constructions, Guimaraes, 511-520.
- [23] Orduna A., Lourenco P.B. (2003) Cap Model for Limit Analysis and Strengthening of Masonry Structures. Journal of Structural Engineering, 129(10), 1367-1376.
- [24] Block, P., Ciblac, T., Ochsendorf, J. A. (2006) Real-time Limit Analysis of Vaulted Masonry Buildings. Computers and Structures, 84(29-30), 1841-1852.
- [25] Roca P., Lopez-Almansa F., Miquel J., Hanganu A. (2007) Limit analysis of reinforced masonry vaults. Engineering Structures 29, 431-439.
- [26] Milani E., Milani G., Tralli A. (2008) Limit analysis of masonry vaults by means of curved fi nite elements and homogenization. International Journal of Solids and Structures, 45(20), 5258-5288
- [27] Szolomicki, J. P. (2009) Structural behaviour of masonry vaults. In Gurlebeck K. and KOnke C. (eds.): 18th Int. Conf. on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, Germany.
- [28] Brencich A., Gambarotta L., Ghia A. (2001) Structural models for the assessment of the masonry dome of the Basilica of S. Maria of Carignano in Genoa. in Lourenco P.B., Roca P. (Eds.): Proc.3rd International Seminar on Historical Constructions, Guimaraes, 675-684.
- [29] Block, P., Ochsendorf, J. A., (2005) Interactive Thrust Line Analysis for Masonry Structures. In Mochi G. (ed): Theory and Practice of Construction: Knowledge, Means, and Models, Ravenna, Italy, , 473-483.
- [30] Block, P., Ochsendorf, J. (2007) Thrust network analysis: A new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures, 48(3), 167-173.
- [31] Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N. (2007) Static analysis of masonry vaults, constitutive model and numerical analysis. J. of Mechanics of Materials and Structures, 2(2), 221-244.
- [32] Fraternali F. (2010) A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mechanics Research Communications, 37, 198-204.
- [33] Block P., Lachauer L., Rippmann M. (2010) Validating Thrust Network Analysis using 3D structural models. In: Proceedings of the International Association for Shell and Spatial Structures (IASSS) Symposium, Shanghai, China, 2010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0025-0070