PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Continuous mathematical models of airlift bioreactors: Families, affinity, diversity and modelling for single-substrate kinetics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method of describing an airlift bioreactor, in which biodegradation of a carbonaceous substrate described by single-substrate kinetics takes place. Eight mathematical models based on the assumption of liquid plug flow and axial dispersion flow through the riser and the downcomer in the reactor were proposed. Additionally, the impact of degassing zone with assumed complete mixing on the obtained results was analyzed. Calculations were performed for two representative hydrodynamic regimes of reactor operation, i.e. with the presence of gas bubbles only within the riser and for complete gas circulation. The conclusions related to the apparatus design and process performance under sufficient aeration of the reaction mixture were drawn on the basis of the obtained results.
Rocznik
Strony
291--309
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Institute of Chemical and Process Engineering, ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] Bales W., Antosova M., 1999. Mathematical and experimental modelling of phenol degradation in air-lift bioreactors. Environ. Eng. Policy, 1, 209-216. DOI: 10.1007/s 100220050024.
  • [2] Boyadjiev Ch., 2006. On the modelling of an airlift reactor. Int. Journal Heat Mass Transf., 49, 2053-2057. DOI: 10.1016/j.ijheatmasstransfer.2006.01.015.
  • [3] Camarasa E., Carvalho E., Meleiro L.A.C., Maciel Filhob R., Domingues A., Wild G., Poncin S., Midoux N., Bouillard J., 2001. Development of a complete model for an air-lift reactor. Chem. Eng. Sci., 56, 493-502. DOI: 10.1016/S0009-2509(00)00253-0.
  • [4] Garcia Calvo E., Leton P., Arranz M.A., 1991. Prediction of gas holdup and liquid velocity in airlift loop reactors containing highly viscous Newtonian liquids. Chem. Eng. Sci., 46, 2951-2954. DOI: 10.1016/0009-2509(91)85165-T.
  • [5] Gavrilescu M., Tudose R.Z., 1998 Concentric-tube airlift bioreactors. Part I: Effects of geometry on gas holdup. Bioprocess Eng., 19, 37-44. DOI: 10.1007/s004490050480.
  • [6] Grzywacz R., 2008. Experimental verification of hydrodynamic models for airlift reactor. Technical Journal -Mechanics. Cracow University of Technology, (105) 5-M, 151-158.
  • [7] Grzywacz R., 2009. Influence of construction and process parameters on gas holdup coefficient in downcomer of airlift reactor. Inz. Aparat. Chem, 48, 76-78.
  • [8] Grzywacz R., Lubas P., 2006. Effect of operational conditions on the aeration of an airlift reactor. Analysis of the steady states. Chem. Process Eng., 27, 1361-1376.
  • [9] Heijnen J.J., Hols J., van der Lans R.G.J.M., van Leeuwen H.L.J.M., Mulder A., Weltevrede R., 1997. A simple hydrodynamic model for the liquid circulation velocity in a full scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem. Eng. Sci., 52, 2527-2540. DOI: 10.1016/S0009-2509(97)00070-5.
  • [10] Kanai T., Ichikawa J., Yoshikawa H., Kawase Y., 2000. Dynamic modelling and simulation of continuous airlift bioreactors. Bioproc. Eng., 23, 213-220. DOI: 10.1007/s004499900154.
  • [11] Kanai T„ Uzumaki T., Kawase Y., 1996. Simulation of airlift bioreactors: Steady-state performance of continuous culture processes. Comp. Chem. Eng., 20, 1089-1099. DOI: 10.1016/0098-1354(95)00225-1.
  • [12] Korpijarvi J., Oinas P., Reunanen J., 1999. Hydrodynamics and mass transfer in an airlift reactor. Chem. Eng. Sci., 54, 2255-2262. DOI: 10.1016/S0009-2509(98)00439-4.
  • [13] Marchuk J.C., Stein Y., Mateles R.I., 1980. Distributed parameter model of an airlift fermentor. Biotechnol. Bioeng., 22, 1189-1211. DOI: 10.1002/bit.260220607.
  • [14] Pawlowsky U., Howell J.A., 1973. Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnol. Bioeng., 15, 889-896. DOI: 10.1002/bit.260150506.
  • [15] Sikula I., Markos J., 2008. Modelling of enzymatic reaction in an airlift reactor using an axial dispersion model. Chemical Papers, 62, 10-17. DOI: 10.2478/sl 1696-007-0073-9.
  • [16] Vial Ch., Poncin S., Wild G, Midoux N., 2001. A simple method for regime identification and flow charactersation in bubble columns and airlift reactors. Chem. Eng. Proc, 40, 135-151. DOI: 10.1016/S0255-2701(00)00133-1.
  • [17] Znad H, Bales V., Marko§ J., Kawase Y., 2004. Modelling and simulation of airlift bioreactors. Biochem. Eng. Journal, 21, 73-81. DOI: 10.1016/j.bej.2004.05.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0022-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.