PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing novel correlations for calculating natural gas thermodynamic properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural gas is a mixture of 21 components and it is widely used in industries and homes. Knowledge of its thermodynamic properties is essential for designing appropriate processes and equipment. This paper presents simple but precise correlations of how to compute important thermodynamic properties of natural gas. As measuring natural gas composition is costly and may not be effective for real time process, the correlations are developed based on measurable real time properties. The real time properties are temperature, pressure and specific gravity of the natural gas. Calculations with these correlations are compared with measured values. The validations show that the average absolute percent deviation (AAPD) for compressibility factor calculations is 0.674%, for density is 2.55%, for Joule-Thomson coefficient is 4.16%. Furthermore, in this work, new correlations are presented for computing thermal properties of natural gas such as enthalpy, internal energy and entropy. Due to the lack of experimental data for these properties, the validation is done for pure methane. The validation shows that AAPD is 1.31%, 1.56% and 0.4% for enthalpy, internal energy and entropy respectively. The comparisons show that the correlations could predict natural gas properties with an error that is acceptable for most engineering applications.
Rocznik
Strony
435--452
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
  • Shahrood University of Technology, The Faculty of Mechanical Engineering, PO Box 316, Postal Code 3619995161, Shahrood, Iran
Bibliografia
  • 1. AGA8-DC92 EoS, 1992, Compressibility and super compressibility for natural gas and other hydrocarbon gases, Transmission Measurement Committee Report No. 8, AGA Catalog No. XQ 1285, Arlington, VA.
  • 2. AlQuraishi A.A. Shokir E.M., 2009. Viscosity and density correlations for hydrocarbon gases and pure and impure gas mixtures. Pet. Sci. Technol., 27, 1674- 1689. DOI: 10.1080/10916460802456002.
  • 3. Azizi N., Behbahani R., Isazadeh M. A., 2010. An efficient correlation for calculating compressibility factor of natural gases. J. Nat. Gas Chem., 19, 642-645. DOI:10.1016/S1003-9953(09)60081-5.
  • 4. Bahadori A., Vuthaluru H. B., 2009. A novel correlation for estimation of hydrate forming condition of natural gases. J. Nat. Gas Chem., 18, 453^157. DOI:10.1016/S1003-9953(08)60143-7.
  • 5. Beggs H. D., Brill J. P., 1973. Study of two-phase flow in inclined pipes. J. of Pet. Tech. May, 607-617. DOI: 10.2118/4007-PA.
  • 6. Capla L., Buryan P., Jedelsky J., Rottner M., Linek J., 2002. Isothermal PVT measurements on gas hydrocarbon mixtures using a vibrating-tube apparatus. J. Chem. Thermodyn., 34, 657-667. DOI: 10.1006/jcht.2001.0935.
  • 7. Dranchuk P.M., Abou-Kassem J.H., 1975. Calculation of Z-factors for natural gases using equations of state. J. Can. Petrol. Tech. 14-34. DOI: 10.2118/75-03-03.
  • 8. Elsharkawy A.D., Yousef S.Kh., Hashem S., and Alikhan A.A., 2001. Compressibility factor for gas condensates. Energy Fuels, 15, 807-816. DOI: 10.1021 /ef000216m.
  • 9. Elsharkawy A.M., 2004. Efficient methods for calculations of compressibility, density and viscosity of natural gases. Fluid Phase Equilib., 218, 1-13. DOI:10.1016/j.fluid.2003.02.003.
  • 10. Ernst G., Keil B., Wirbser H., Jaeschke M., 2001. Flow-calorimetric results for the massic heat capacity cp and the Joule-Thomson coefficient of CH4, of 0.85 CH4 + 0.15 C2H6, and of a mixture similar to natural gas. J. Chem. Thermodyn., 33, 601-613. DOI:10.1006/jcht.2000.0740.
  • 11. Farzaneh-Gord M., Khamforoush A., Hashemi S., Pourkhadem N. H., 2010. Computing thermal properties of Natural gas by utilizing AGA8 Equation of State. Int. J. Chem. Eng. Appl, 1, 20-24.
  • 12. Farzaneh-Gord M., Rahbari H.R., 2012. Numerical procedures for natural gas accurate thermodynamics properties calculation. Journal of Engineering Thermophysics, accepted for publishing in Vol. 20 (2).
  • 13. Guo X.Q., Wang L.S., Rong S.X., Guo T.M., 1997. Viscosity model based on equations of state for hydrocarbon liquids and gases. Fluid Phase Equilib., 139 (1-2), 405^121. DOI: 10.1016/S0378-3812(97)00156-8.
  • 14. Heidaryan E., Moghadasi J., Rahimi M., 2010. New correlations to predict natural gas viscosity and compressibility factor. J. Pet. Sci. Eng., 73 , 67-72. DOI:10.1016/j.petrol.2010.05.008.
  • 15. Heidaryan E., Salarabadi A., Moghadasi J., 2010. A novel correlation approach for prediction of natural gas compressibility factor. J. Nat. Gas Chem., 19, 189-192. DOI:10.1016/S1003-9953(09)60050-5.
  • 16. Hwang C.A., Simon P.P., Hou H., Hall K.R., Holste J.C., Marsh K.N., 1997. Burnett and pycnometric (P, Vm, T) measurements for natural gas mixtures. J. Chem. Thermodyn., 29,1455-1472. DOI: 10.1006/jcht. 1997.0258.
  • 17. Kumar N., 2004. Compressibility factor for natural and sour reservoir gases by correlations and cubic equations of state, MS thesis, Texas Tech University, Lubbock, Tex, USA, 14-15, 23.
  • 18. Londono F.E., Aicher R.A., Blasingame T.A., 2002. Simplified correlations for hydrocarbon gas viscosity and gas density validation and correlation behavior using a large scale database. SPE Paper 75721, SPE Gas Technology Symposium, Calgary, Canada, April 30-May 2. DOI: 10.2118/75721-MS.
  • 19. Marie I., 2005. The Joule-Thomson effect in natural gas flow-rate measurements. Flow Meas. Instrum., 16, 387-95. DOI: 10.1016/j.flowmeasinst.2005.04.006.
  • 20. Marie I., 2007. A procedure for the calculation of the natural gas molar heat capacity, the isentropic exponent, and the Joule-Thomson coefficient. Flow Meas. Instrum., 18, 18-26. DOI:10.1016/j.flowmeasinst.2006.12.001.
  • 21. Marie I., Galovic A., Smuc T., 2005. Calculation of natural gas isentropic exponent. Flow Meas. Instrum., 16, 13-20. DOI: 10.1016/j.flowmeasinst.2004.11.003.
  • 22. McElroy P.J., Battin R., Dowd M.K.,1989. Compression-factor measurements on methane, carbon dioxide, and (methane+carbon dioxide) using a weighing method. /. Chem. Thermodyn., 21, 1287-1300. DOI: 10.1016/0021-9614(89)90117-1.
  • 23. Najim AM., 1995. Evaluations of Correlations for Natural Gas Compressibility Factors, MS thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 6-9.
  • 24. Patil P., Ejaz S., Atilhan M., Cristancho D. , Holste J., Hall K.R., 2007. Accurate density measurements for a 91% methane natural gas-like mixture. J. Chem. Thermodyn., 39,1157-1163. DOI:10.1016/j.jct.2007.01.002.
  • 25. Setzmann U., Wagner W., 1991. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20, 1061-1155. DOI: 10.1063/1.555898.
  • 26. Staby A., Mollerup J.M.,1991. Measurement of the volumetric properties of a nitrogen-methane-ethane mixture at 275, 310, and 345 K at pressures to 60 MPa. J. Chem. Eng. Data, 36, 09-91. DOI: 10.1021/je00001a026.
  • 27. Standing M.B., Katz D.L., 1942. Density of natural gases. Trans. AIME, 146, 140-149.
  • 28. Yarborough L., Hall K.R., 1974. How to Solve Equation of State for Z-factors? Oil & Gas J., Feb 18, 86-88.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0014-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.